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Abstract A nonlinear viscoelastoplastic theory is developed for porous rate-dependent materials filled
with a fluid in the presence of gravity. The theory is based on a rigorous thermodynamic formalism suitable
for path-dependent and irreversible processes. Incremental evolution equations for porosity, Darcy’s flux,
and volumetric deformation of the matrix represent the simplest generalization of Biot’s equations. Expressions
for pore compressibility and effective bulk viscosity are given for idealized cylindrical and spherical pore
geometries in an elastic-viscoplasticmaterial with low pore concentration.We show that plastic yielding around
pores leads to decompaction weakening and an exponential creep law. Viscous and plastic end-members
of our model are consistent with experimentally verified models. In the poroelastic limit, our constitutive
equations reproduce the exact Gassmann’s relations, Biot’s theory, and Terzaghi’s effective stress law. The
nature of the discrepancy between Biot’s model and the True Porous Media theory is clarified. Our model
provides a unified and consistent formulation for the elastic, viscous, and plastic cases that have previously
been described by separate “end-member” models.

1. Introduction

Fluid flow in porous media has received much attention over the last century [Biot, 1941, 1962; Frenkel, 1944;
Gassmann, 1951; Mckenzie, 1984; Scott and Stevenson, 1984; Sleep, 1974; Turcotte and Ahern, 1978; von Terzaghi,
1923]. The theory of poroelasticity in the form proposed by Biot [1941, 1956a, 1956b, 1962] is widely used
in the prediction of seismic wave propagation and has broad industrial applications that lie far beyond the
originally proposed field of applications. The viscous model formulated by Mckenzie [1984] forms the basis
for the understanding of sedimentary compaction andmelt migration in partially molten rocks. In recent years,
new extensions to the theory of fluid-saturated porous media based on rigorous thermodynamic constitutive
modeling have appeared [Bercovici et al., 2001; Coussy, 2004; de Boer, 2000; Delacruz et al., 1993; Gray and
Miller, 2005; Lopatnikov and Cheng, 2004; Sramek et al., 2007; Wilmanski, 2006]. Most of these studies
were restricted to the case of either reversible elastic or irreversible, but linear viscous, rheologies. However,
mechanical compaction in porous media may include nonlinear irreversible and path-dependent processes
that result from grain crushing, friction, and pore collapse [Aydin and Johnson, 1983; Fortin et al., 2007;
Vajdova et al., 2004].

Nonlinear (elasto-)viscoplastic models are widely used for metals and other nonporous materials [Hill,
1950]. For porous materials, macro- and microscale nonlinear theories were proposed in the works of several
authors [Carroll and Holt, 1972; Coussy, 2004; Duva and Hutchinson, 1984; Green, 1972; Gurson, 1977; Perzyna
and Drabik, 1989; Tvergaard, 1981]. Due to imperfections in internal structure, rocks and many polycrystalline
materials possess different properties in tension and compression [Connolly and Podladchikov, 2007;
Lyakhovsky and Hamiel, 2007; Lyakhovsky et al., 1993, 1997; Nguyen et al., 2011]; they exhibit a difference in
loading/unloading behavior and elastic hysteresis even at very small strains (on the order of 10� 7) typical
for acoustic waves [Johnson and Rasolofosaon, 1996; Kadish et al., 1996; Mashinskii, 2003; Yarushina and
Podladchikov, 2010]. Mechanical compaction may be accompanied by dissolution processes [Karcz et al., 2008].
Accounting for these nonlinearities and path dependency requires model verification for thermodynamic
consistency [Houlsby and Puzrin, 2000].

In this paper, we present a simple mathematical model for nonlinear porous viscoelastoplastic materials.
Our main motivation is to establish a simple unifying theory for porous fluid flow in a deformable matrix that
is able to capture the range of rheological responses expected within the Earth’s lithosphere. These responses
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can vary from elastic small strain consoli-
dation [Biot, 1941; von Terzaghi, 1923]
to plastic porosity collapse from tenths
to a few percents of porosity in near-
surface sediments and up to high-
temperature creep during extraction of
melts and metamorphic fluids [Connolly
and Podladchikov, 1998, 2000, 2007,
2013; Keller et al., 2013]. Moreover, recent
discovery of a continuum spectrum of
the episodic tremor and slip events
bridging the gap between slow tectonic
motion and earthquakes [Peng and
Gomberg, 2010] have created a need for
two-phase mathematical models that
are capable of episodic transitions from
elastic loading to failure and stable creep.

The Maxwell model is a standard choice
for viscoelastic lithosphere response at
mantle convection time scales [Beuchert

and Podladchikov, 2010] that is compatible with elastic deformation at the shorter postglacial rebound and with
melt extraction time scales. We present a macroscopic Maxwell-type viscoelastic (de)compaction rheological
model as an appropriate manifestation of pore-scale Maxwell viscoelasticity of the solid grains. We show that
pore-scale plastic yielding around stress concentrators may be accounted for by the nonlinearity of the effective
macroscopic (de)compaction viscosity [Sonder and England, 1986]. We verify thermodynamic admissibility
of our model using classical irreversible thermodynamics. Our constitutive relations are consistent
with Biot’s poroelasticity, exact Gassmann’s relations [Gassmann, 1951; Gurevich, 2007], and an effective
stress law [Nur and Byerlee, 1971; von Terzaghi, 1923] that has been suggested and experimentally verified for
poroelastic materials. We make use of the mathematical similarity in the description of viscous and elastic
behavior at the microscale to infer the viscous limit of the macroscopic equations.

2. Thermodynamically Admissible Closed System of Equations

The system of equations describing fluid flow in porous viscoelastoplastic media can be formed on a basis
of balance laws for fluid and solid phases (see Appendix A for detailed derivations and Tables 1 and 2 for
notations used). It consists of conservation of linear momentum for both phases

∇j τij � pδij
� �� giρ ¼ 0 (1)

qD
i ¼ � k

ηf
∇ip

f þ giρ
f

� �
(2)

and conservation of mass for both phases

1
ρs
dsρs

dt
� 1
1� φ

dsφ
dt

þ ∇jv
s
j ¼ 0 (3)

φ
ρf
dfρf

dt
þ dsφ

dt
þ φ∇jv

s
j þ ∇jq

D
j ¼ 0: (4)

The Maxwell viscoelastic relationship [Beuchert and Podladchikov, 2010] relates deviatoric stresses and
velocity gradients

∇iv
s
j þ ∇jv

s
i ¼

1
G
d∇τij
dt

þ τij
ηs

(5)

Table 1. List of Principal Notation

Symbol Meaning Unit

a, b, c internal and external radii of RVE, plastic radius m
gi gravitational force m s�2

G elastic shear modulus of solid mineral grains Pa
Ks, Kf solid and fluid bulk moduli Pa
Kd, Ku drained and undrained bulk moduli Pa

Kpore, Kφ effective bulk moduli of pore space Pa
m m=1 for cylindrical pores,m= 2 for spherical pores

ps, pf pressure of solid and fluid phases Pa

vsi ; v
f
i solid and fluid velocity m s�1

Us
i ;U

f
i solid and fluid displacements m

Y yield stress/cohesion Pa
δij Kronecker-delta
φ porosity
ϕ, ψ internal angle of friction, angle of dilation
ηs, ηf, ηφ solid and fluid shear viscosity; effective viscosity Pa s

ξ ξ = 1 for compaction, ξ =� 1 for decompaction

ρs, ρf solid and fluid density kgm�3

ω aspect ratio of elliptical and spheroidal pores
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where d∇τij=dt is the Jaumann objective
stress rate that satisfies the objectivity
principle, i.e., does not depend on
the frame of reference (see Table 2
for description). The Maxwell visco-
elastic volumetric response for porosity
evolution is

dsφ
dt

¼ 1
Kφ

df pf

dt
� dsp

dt

 !
þ 1
ηφ

pf � p
� �

;

(6)

and elastic compressibility for fluid and
solid densities is expressed as follows:

Kf

ρf
dfρf

dt
¼ df pf

dt
(7)

Ks

ρs
dsρs

dt
¼ 1

1� φ
dsp
dt

� φ
df pf

dt

 !
≈
∂ps

∂t
:

(8)

Equations (1)–(8) constitute a closed system of equations for 16 unknowns (i.e., three velocities, three
components of Darcy’s flux, two pressures, five deviatoric stress components, two densities, and porosity;
see Tables 1 and 2 for notations used). Thermodynamic admissibility of this system is verified in Appendix A.
A more familiar form of poroviscoelastic equations is recovered by substituting equations (6) through (8) into
mass balance to eliminate the time derivatives of densities and porosity:

∇kv
s
k ¼ � 1

Kd

dsp
dt

� α
df pf

dt

 !
� p� pf

1� φð Þηφ
(9)

∇kq
D
k ¼ α

Kd

dsp
dt

� 1
B
df pf

dt

 !
þ p� pf

1� φð Þηφ
(10)

where

1� φ
Kd

¼ 1
Kφ

þ 1
Ks

(11)

α ¼ 1� Kd

Ks
(12)

B ¼
1
Kd

� 1
Ks

1
Kd

� 1
Ks

þ φ 1
Kf

� 1
Ks

� � : (13)

Linear elastic limits (infinite ηφ) of equations (9) and (10) are consistent with Biot’s poroelasticity, the effective
stress law formulated by Nur and Byerlee [1971], and Gassmann’s relations between elastic bulk moduli
(see Appendix B).

The incompressible (infinite Ks and Kf) elastic limit is as follows:

∇kv
s
k ¼ � 1

1� φð ÞKφ

dsp
dt

� df pf

dt

 !
(14)

∇kq
D
k ¼ 1

1� φð ÞKφ

dsp
dt

� df pf

dt

 !
: (15)

Table 2. Shorthand Notations

Symbol Meaning

α Biot-Willis coefficient, equation (12)

εij ¼ ∇jvsi þ ∇ivsj
� �

=2� ∇kvskδij=3, deviator of strain rate

κ = (1� ξ sinϕ)/(1 + ξ sinϕ), shorthand notation

ρ = ρfφ + ρs(1� φ), total density

τij ¼ τsij 1� φð Þ þ τfijφ, total stress deviator

B Skempton’s coefficient, equation (13)

p = pfφ + ps(1� φ), total pressure
pe ¼ p� pf ¼ ps � pf

� �
1� φð Þ, effective pressure

qDi ¼ φ vfi � vsi
� �

, Darcy’s flux

Y* = 2Yξ cosϕ/(1 + ξ sinϕ), shorthand notation
df

dt ¼ ∂
∂t þ vfi ∇i ¼ ds

dt þ vfi � vsi
� �

∇i , Lagrangian derivative with

respect to fluid
ds

dt ¼ ∂
∂t þ vsi∇i , Lagrangian derivative with respect to solid

d∇σij
dt ¼ ∂σij

∂t � σikWkj � σjkWki , Jaumann objective stress rate

Wki ¼ 1
2

∂vk
∂xi �

∂vi
∂xk

� �
, antisymmetric part of velocity gradient
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Time integration of these equations at small strains yields Biot’s linear poroelastic equations for the
incompressible case:

∇kU
s
k ¼ � p� pf

1� φð ÞKφ
(16)

∇k φ Uf
k � Us

k

� �� � ¼ p� pf

1� φð ÞKφ
: (17)

Biot’s macroscopic model was confirmed by a number of upscaling techniques applied to average (pore-)
microscale elasticity [Berryman, 2005; Gurevich, 2007; Lopatnikov and Cheng, 2004; Pride et al., 1992]. The
above incompressible limit of Biot’s model is in agreement with the so-called Theory of Porous Media
[Schanz, 2009; Schanz and Diebels, 2003]. Due to the analogy between slow incompressible viscous motion
and elastic deformation [Goodier, 1936], the following equations would be derived by the same techniques
for the viscous pore(micro)-scale deformation:

∇kv
s
k ¼ � p� pf

1� φð Þηφ
(18)

∇kq
D
k ¼ ∇k φ vfk � vsk

� �� � ¼ p� pf

1� φð Þηφ
: (19)

Equations (9) and (10) are the simplest (Maxwell viscoelastic) addition to the elastic (equations (14) and (15))
and viscous (equations (18) and (19)) bulk deformation modes. They represent macroscopic manifestation of
the microscopic (pore scale) Maxwell viscoelastic bulk and shear deformation.

3. Effective Pore Compressibility Kφ and Effective Viscosity ηφ
The compaction equations introduced above have two additional material parameters, pore compressibility
Kφ and effective viscosity ηφ, that may depend on porosity and pore geometry. These parameters can be
measured in experiments [Dong et al., 2010; Zimmerman, 1991] or derived theoretically based on effective
media theory. The effective bulk modulus and the viscosity define the character of fluid flow through porous
media. In particular, porosity waves are very sensitive to the functional dependence of effective viscosity on
porosity and pressure. Depending on effective viscosity, they can take the form of spherical blobs, flattened
ellipsoidal structures, or elongated tubular jets [Connolly and Podladchikov, 2013; V. M. Yarushina, et al.,
(De)compaction of porous viscoelastoplastic media: Solitary porosity waves, submitted to Journal of Geophysical
Research, 2015]. Their size and speed of propagation are strongly influenced by effective viscosity. Even
in standard industrial applications such as hydraulic fracturing, the structure of the effective bulk modulus
influences the levels of fluid loss [Yarushina et al., 2013].

In this section, we derive the effective bulk modulus and the effective viscosity in viscoelastoplastic rocks
containing idealized cylindrical or spherical pores (Figure 1). These two geometries capture different stages
of compaction [Wilkinson and Ashby, 1975]. Spherical pores represent low-porosity material, while cylinders
are well suited for intermediate porosities. The porous rock is then viewed as an assembly of irregular
space-filling polygons with an internal cavity that might be idealized as cylindrical (spherical) shells with
the specific ratio of radii determined by porosity so that

φ ¼ a=bð Þmþ1: (20)

Parameterm takes values of 1 or 2 for cylindrical and spherical pores, respectively. Differentiation of equation (20)
leads to a more practical rate form of the porosity equation:

�φ= φ mþ 1ð Þð Þ ¼ vr=rjr¼a � vr=rjr¼b (21)

where vr is the rate at which the walls of the shell contract or expand. Changes in total and fluid pressures in
the porous rock cause changes in the size of each shell and hence in porosity. We assume that each of the
shells forms a representative volume element (RVE), i.e., it deforms (1) independently of the other shells
and (2) similar to all other shells. In addition, porosity is assumed to be sufficiently small so that interaction
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between different pores is ignored. A solid matrix is composed of minerals with similar mechanical properties
that do not swell or shrink in the presence of saturating fluid. Thus, by considering the mechanical
equilibrium of one shell under an applied load, we find a rate at which the pore space contracts or expands,
i.e., the porosity equation.

One of the fundamental questions related to the concept of an RVE is the correct formulation of the pressure
boundary conditions on the inner and outer walls of the shell, given that at least four pressures are associated
with the porous rocks, namely, pf, ps, p, and pe. In our model, we impose pf on the pore boundary and p on
the outer boundary (see Appendix C for detailed discussion). Compaction equations obtained by volume
averaging are consistent with thermodynamically derived viscous compaction equations and with exact
Gassmann’s relations in the elastic limit.

3.1. Viscoelasticity

At low stresses and high strain rates, rocks exhibit elastic behavior. In sedimentary rocks, pressure solution on
grain boundaries in the presence of fluids leads to viscous deformation. Deeper in the Earth, the cold upper
mantle deforms by diffusion creep at a relatively low stress level [Karato, 2008] and also results in a linear
viscous rheology. The solution to elastic and viscous boundary value problems discussed in detail in
Appendix C gives the radial velocity of the shell as a function of total and fluid pressures. Using boundary
velocities in equation (21) leads to the following elastic porosity equation:

�pe ¼ �Kφ
�φ (22)

and the following viscous porosity equation:

pe ¼ �ηφ
�φ (23)

with

Kφ ¼ 2m
mþ 1

G
φ
; ηφ ¼ 2m

mþ 1
ηs
φ
: (24)

Mechanical equilibrium in elastic and viscousmaterials has a similar description. This fact is largely known as the
correspondence principle. It is responsible for similarity between derived elastic and viscous porosity equations.

3.2. Viscoplasticity

Elevated temperatures and the presence of pore fluids reduce the strength of the rock. Local heterogeneities
such as pores, edges, or grain boundaries have the ability to amplify stresses locally. The combination of
these factors can eventually lead to the development of a permanent plastic deformation around structural
imperfections. Unlike viscous deformation, which is also permanent but rate dependent, plastic deformation

Figure 1. Viscous (elastic) model of porous media. A solid matrix contains cylindrical (spherical) pores of different sizes.
Each pore of radius a is surrounded by a solid deformable shell of radius b. For elastic deformation of a shell, the rates of
fluid pressure �pf and total pressure �p̄ are prescribed at the internal and external boundaries of the shell, respectively.
The elastic properties of the shell are the same as of the rock mineral grains and are given by bulk modulus Ks and shear
modulus Gs. For viscous deformation, inside every pore there is uniform pore pressure pf. The outer wall of the shell is
subjected to a uniform total pressure p. The bulk and shear viscosities of the shell are ζ s and ηs.

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011258

YARUSHINA AND PODLADCHIKOV (DE)COMPACTION OF POROUS MEDIA 4150



is rate independent and occurs only when
stresses reach a certain yield criterion.
Viscous, elastic, and plastic deformation
can develop simultaneously allowingmate-
rials to flow like viscous fluids at very long
time scales and yet sustain the propagation
of seismic waves at short time scales.

We consider three different types of plastic
deformation: (1) dilatant brittle failure asso-
ciated with frictional sliding on grain
boundaries; (2) pressure-insensitive, nondi-
latant failure associated with deformation
accommodated by mode II shear micro-
cracks or crystal plasticity; and (3) genera-
tion of mode I open microfractures in an
extensional regime (Figure 2). These modes

correspond to three different stress levels. Dilatant brittle failure is expected to occur in crustal and upper
mantle rocks that deform under moderate stress and low-temperature conditions [Escartin et al., 1997;
Hirth, 2002; Karato, 2008]. The increasing confining pressure with depth tends to reduce frictional sliding
of crack surfaces. Observations [Escartin et al., 1997; Hirth, 2002] indicate that high-pressure samples are
brittle, but mode II shear cracks dominate with increasing pressure and lead to significant deviations
from Byerlee’s law. We interpret the reduction of the pressure dependence of the yield stress at high
pressures observed in experiments as a transition from Mohr-Coulomb plasticity to von Mises yielding.
Microfracturing is expected for tensile loads (Figure 2). In the deep Earth, brittle deformation is replaced
by viscous ductile flow. However, before this happens, viscous flow and brittle failure act together in a
transitional semibrittle regime. This regime is characterized by high stresses, weak temperature dependence,
and exponential dependence of strain rate on stress that cannot be explained by linear diffusional or power
law dislocation creep [Karato, 2008]. We show on a theoretical basis that pressure-insensitive yielding leads to

exponential dependence of strain rate on stress,
while dilatant brittle failure andmicrofracturing lead
to different rheological behavior in compaction and
decompaction regimes.

In porous materials, plastic yielding concentrates
around pores (Figure 3). Before the onset of plasti-
city, the material behavior is viscous. As stresses
around the pore increase in response to rising
effective pressure, the plastic region of radius c
starts to grow. Viscous flow continues further away
from the plastic boundary. The nucleation of the
first kern of plasticity marks the onset of pore
collapse with the critical pressure determined by
microscale failure criterion. From that time on,
increasing load leads to the growth of plastic zones
until the plastic radius c reaches the outer bound-
ary of an RVE. That moment corresponds to the full
plastic pore collapse when the whole rock is in
failure. Plastic flow around the pore reduces the
stress concentration and enhances compaction or
decompaction in comparison with a purely elastic
or viscous case.
3.2.1. Pressure-Insensitive Yielding
Pressure-insensitive nondilatant failure is associated
with Tresca or von Mises yield criteria on the pore

Figure 2. Typical nonlinear failure curve (dotted line) and its piecewise
linear approximation (solid line) used as a microscopic yield criterion
for plastic flow around pores.

Figure 3. Viscoplastic cylindrical (spherical) model of a
representative volume element subjected to total pressure
p and fluid pressure pf. In response to external loads that
reached a certain yield criterion, the plastic domain of
radius c spreads into the shell from the inner boundary.
The rest of the volume is still in a viscous state. The viscous
volumetric deformation of the shell walls is assumed to be
negligible in comparison to shear viscosity (ζ s = 0).
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scale. Both of them give the following range of effective pressures at which viscoplastic compaction in ductile
porous materials occurs (see Appendix D for derivations):

1� φ ≤
mþ 1
2m

pej j
Y

≤ ln 1=φ: (25)

The lower limit in equation (25) defines the onset of plasticity, and the upper bound stands for the full plastic
pore collapse. Both critical pressures depend on porosity, which is a function of the current stress state.
Therefore, macroscopic behavior exhibits hardening during compaction and softening during decompaction.
At pe satisfying equation (25), the porosity equation takes the form of equation (23) with effective viscosity
depending on effective pressure, yield stress, pore geometry, and shear viscosity of a solid matrix

ηφ ¼ ηs
φ 1� φð Þ

pej j
Y

c=að Þ�m�1 (26)

where c/a defines the size of the plastically flowing zone near the idealized pore and has the following
dependence on pe:

pe=Yj j ¼ 2m= mþ 1ð Þ � 1þ ln c=að Þmþ1 � φ c=að Þmþ1� �
: (27)

In a small porosity limit (φ<< 1), equation (26) reduces to

ηφ ¼ ηs
φ

pej j
Y

exp 1� pej j
Y

mþ 1
2m

� �
: (28)

Figure 4 shows the dependence of effective viscosity on effective pressure for nondilute and dilute porosity
distributions calculated according to equations (26) and (28). Equation (28) gives an exponential flow law
associated with the brittle-ductile transition and rock behavior at low temperatures [Evans and Goetze,
1979; Karato, 2008].

At full pore collapse corresponding to the upper limit in equation (25), the viscoplastic interface reaches the
outer boundary of the shell, and the compaction of the entire porousmatrix is fully plastic. The pore compaction
relation for this phase of compaction relates the porosity directly to effective pressure:

pe ¼ 2m= mþ 1ð Þ � Yξ ln 1=φð Þ: (29)

The full pore collapse relation in equation (29) plays a role similar to the normal consolidation line in
the elastoplastic Cam-Clay model [Sheldon et al., 2006]. However, in viscoplastic models, the permanent
deformation that develops below the critical pressure in equation (29) is rate dependent and can accumulate
at constant stresses.

Figure 4. Effective viscosity ηφ of a pressure-insensitive viscoplastic porous rock normalized to the shear viscosity of the
solid rock frame ηs and porosity φ as a function of ratio |pe|/Y of the absolute value of effective pressure to the yield
strength of rock frame. (a) Effective viscosity is calculated according to equation (26) at φ = 0.01 for cylindrical and spherical
pores. (b) The small porosity approximation to effective viscosity is calculated according to equation (28) for cylindrical
and spherical pores. Both exact and approximate trends show that cylindrical pores are more compliant; however, the
effect of pore geometry on effective viscosity is rather weak. Plastic yielding reduces the effective viscosity. Ductile plastic
deformation does not make a difference in compactive versus decompactive behavior of a porous rock.
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3.2.2. Dilatant Brittle Failure
Brittle failure is associatedwith theMohr-Coulomb yield criterion on the pore scale, which leads to the following
pressure range for viscoplastic deformation (see Appendix D for details):

m
κ mþ 1ð Þ 1� φð Þ ≤ pe

Y� ≤
1

κ � 1
1� φm κ�1ð Þ= mþ1ð Þκð Þ
� �

: (30)

The lower limit in equation (30) defines the plasticity onset, and the upper bound stands for the full plastic
pore collapse. Similar to previous case of pressure-insensitive yielding, critical pressures in equation (30)
depend on porosity, which accounts for hardening/softening behavior. In the viscoplastic regime, effective
viscosity takes the following form:

ηφ ¼ 2ηsκ
φ

pe
Y� 1� φeP κþmð Þ= m�mκð Þ þ

ePγ � 1
� �

κ þmð Þ
m 1� κð Þγ

0@ 1A�1

(31)

where

γ ¼ 1� κ= κ � 1ð Þ � 1=ς þ 1=mð Þ

eP ¼ κ mþ 1ð Þ a=cð Þmþ1 1þ 1� κð Þpe=Y�

a=cð Þmþ1 κ þmð Þ þ φ κ � 1ð Þm :

In a small porosity limit (φ<< 1),

ηφ ¼ 2ηsκ
φ

pe
Y� 1þ

eP γ � 1
� �

κ þmð Þ
m 1� κð Þγ

0@ 1A�1

(32)

with

eP ¼ κ mþ 1ð Þ
κ þmð Þ 1þ 1� κð Þpe=Y�ð Þ:

In the plastic regime, effective viscosities in equations (31) and (32) for brittle viscoplastic porous materials
are strongly dependent on the magnitude and the sign of effective pressure (Figure 5). Increasing load tends
to reduce effective viscosity and significantly enhances viscous deformation. Dependence on the sign of
loading results in the difference in the material response to tensile and compression loads so that an equal

Figure 5. Effective viscosity ηφ of a brittle viscoplastic porous rock normalized to the shear viscosity of the solid rock frame
ηs and porosity φ as a function of ratio pe/Y of effective pressure to the yield strength of the rock frame. (a) Effective viscosity
is calculated according to equation (31) at φ = 0.01 for cylindrical and spherical pores. (b) The small porosity approximation
to effective viscosity is calculated according to equation (32) for cylindrical and spherical pores. All calculations are
performed for a friction angle of ψ = π/6 and a dilation angle ϕ = 0. Both exact and approximate trends show that
cylindrical pores are more compliant; however, the effect of pore geometry on effective viscosity is rather weak. Plastic
yielding reduces the effective viscosity. Brittle plastic deformation leads to decompaction weakening of a porous rock
and shows different dependence of effective viscosity on effective pressure for compaction and decompaction.
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degree of decompaction would occur at
much lower stresses than compaction
(Figure 5). Accordingly, equal compressive
and tensile stresses would result in the
much higher rates of decompaction in com-
parison with compaction (i.e., decompac-
tion weakening). When effective pressure
reaches the upper limit in equation (30),
the pore compaction relation for the fully
plastic phase of compaction takes the
following form:

pe ¼
Y�

κ � 1
1� φm κ�1ð Þ= mþ1ð Þκð Þ
� �

:

3.2.3. Microfracturing
At high fluid pressures or low total pressure,
microfracturing might occur. In a rock
with spherical or cylindrical pores, frac-
tures emanate from the voids. Fracture
growth on the pore scale is governed by
the Griffith failure criterion [e.g., Jaeger et al.,

2007, pp. 314–320] according to which distributed microfracturing in porous rock occurs in the decompaction
regime when (see Appendix D for detailed derivations)

� 1� φ
m
mþ1

� �
≤
pe
Y

≤ �m 1� φð Þ
mþ 1

(33)

with effective viscosity of the form

ηφ ¼ 2ηspe

1� φð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe þ Yð Þ2 � φY2

q
� pe þ Yð Þ

� � (34)

for cylindrical pores and

ηφ ¼ � 2
3
ηspe
φ

a=cð Þ3 þ 2φ
pe þ Yð Þ 1� φð Þ (35)

for spherical pores, where a/c ratio can be found from equation (D11). Compaction and the nonfracturing
part of decompaction can be described with effective viscosity in equation (24) obtained for purely viscous
deformation. At the point of full pore collapse given as a lower limit in equation (33), the effective viscosity
is still finite (Figure 6), and its value depends on porosity and pore geometry:

ηφ ¼ 2ηs
1� φð Þ φ�

m
mþ1 � 1

� �
:

Even at small overpressures, microfracturing in rocks can reduce effective viscosity tenfold depending on the
porosity. This leads to a strong asymmetry with respect to the sign of loading (Figure 6). Taking into account
that decompaction weakening occurs in a narrow pressure interval and considering the uncertainties
associated with the idealizations of the cylindrical (spherical) model, the use of complex relations for
effective viscositymight not be justified. The nonlinear part of effective viscosity associatedwithmicrofracturing
in a small porosity limit can well be approximated with a linear relationship (Figure 6):

ηφ ≈
ηs
φ

2 1þ pe=Yð Þ at � 1� ffiffiffi
φ

p� �
≤ pe < �Y=2

1 at pe ≥ � Y=2

(
: (36)

Brittle-ductile deformation in rocks, whether due to dilatant brittle failure or microfracturing, leads to a
difference in material response to compactive and dilating loads in the form of decompaction weakening.
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Figure 6. Effective viscosity ηφ of a viscoplastic porous rock with
microfracturing normalized to the shear viscosity of the solid rock
frame ηs and porosity φ as a function of ratio pe/Y of effective pressure
to the yield strength of the rock frame. Effective viscosity is calculated
according to equations (34)–(36) at φ = 0.001 for cylindrical and
spherical pores.
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Such a difference in compaction/decompaction viscosities was identified before as a reason for generating
tubular fast-propagating high-porosity regions (i.e., porosity waves) that are able to efficiently transport
fluids in the crust and upper mantle [Connolly and Podladchikov, 2013].

4. Comparison to the Previous Models
4.1. Poroelasticity

The field of finite-strain poroelasticity is still under development [Coussy, 1989; Ehlers and Eipper, 1999].
Therefore, we compare here our nonlinear constitutive equations to well-established theories for small strain.
Rice and Cleary [1976] give linear poroelastic constitutive equations that can be represented in the form

ν� ν0 ¼ � 1=Kd � 1=Ksð Þpe � ν0=Ksp
f (37)

p� αpf ¼ �Kdε (38)

pf ¼ Kf ρf � ρf0
� �

=ρf0 (39)

where ε is the total volumetric deformation, and ν is the apparent fluid volume fraction, i.e., the Lagrangian
porosity that relates the pore volume to the total volume in the reference state (ν=Vp/V0 =φV/V0). Note that
our fluid and solid equations of state in equations (7) and (9) reduce to equations (38) and (39) in the linear
elastic case. Equation (37) is consistent with the elastic part of our porosity in equation (6) if Eulerian porosity
is introduced as dφ=dν� φdV/V0. Detournay and Cheng [1993] and Wang [2000] give several different
formulations of linear poroelastic constitutive in equations (37)–(39) and show that they are equivalent to Biot’s
poroelastic theory [Biot, 1941]. Lopatnikov and Cheng [2004] present nonlinear elastic constitutive equations
that after linearization and certain assumptions on material homogeneity lead to linear equations (37)–(39). The
linear poroelastic equations of Carroll [1980b], Coussy [2004], and Guéguen et al. [2004] are also consistent with
equations (37)–(39).

Nonlinear elastic incremental state equations for small strains were previously formulated by Carroll [1980a],
Rice [1975], and Coussy [2004]. It can be shown that the elastic parts of our equations (6), (9), and (10) are
consistent with those of Rice [1975] and Coussy [2004]. They are also consistent with the constitutive equations
of Carroll [1980b]. However, based on effective media theory, Carroll [1980b] derives a different relationship
between bulk moduli that depends not only on porosity as in our equation (11) but also on effective pressure:

1� φ
Kd

¼ 1
Ks

þ 1
Kφ

1� p� pf

1� φð ÞKs

� �
: (40)

Equation (40) follows from the porosity equation and equation of state for a solid matrix taken in the form

dps ¼ �KsdVs=Vs: (41)

However, in a porous rock, the solid matrix feels the presence of the second phase through porosity and
fluid pressure. Therefore, the nonlinear macroscopic definition of solid bulk modulus given by equation (8)
involves both total and fluid pressures.

The constitutive equations of the theory of True Porous Media were claimed to be different from Biot’s
equations [de Boer, 2000, p. 111]. The difference concerns the Biot factor that influences the volumetric
response (Kd/Ks in equation (12)). To clarify this discrepancy, we rewrite the equation for the total volumetric
deformation known as an effective stress law as predicted by both theories:

1. Biot’s poroelasticity

p� αpf ¼ �Kdε (38)

α ¼ 1� Kd

Ks
(12)

1� φ
Kd

¼ 1
Kφ

þ 1
Ks

; (11)
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2. Theory of true porous media

p� 1� BS 1� φð Þ� �
pf ¼ � K̂ Sε (42)

BS ¼ KSN

KSR þ KSN (43)

K̂ S ¼ 1� φð ÞKSRBS: (44)

Equation (42) is based on equation (8.22) from de Boer [2000] for the case of purely volumetric deformation,
where we rewrote porosity and pressures in our notations. Material parameters in equations (43) and (44) are
taken from equations (8.20) and (8.21) from the same source. Indeed, equation (42) contains an effective
stress coefficient (1� BS(1� φ)), which apparently looks different from the Biot-Willis parameter α given by
equation (12). According to de Boer [2000], “quantity BS […] is similar to the Biot factor […] with the difference
being that the denominator in the Biot factor contains only the compression modulus of the real material KSR,
whereas in equation (8.20) (equation (42)), the denominator consists of the sum of the compression modulus
of the real materials KSR and the compression modulus of the solid skeleton KSN. Only in the case where KSN is
very small in comparison with KSR are both results approximately equal.”

Moduli KSR and KSN are interpreted by de Boer [2000] as the bulk modulus of the real material (Ks in our
notation) and the bulk modulus of the solid skeleton, respectively. The last definition is a little vague, since
there are several bulk moduli that can be related to the skeleton, including Kd and Kφ. Obviously, de Boer
compares his parameter KSN to the drained bulk modulus Kd. To establish the true meaning of KSN, we look
at its definition given by equation (8.7) from de Boer [2000]

pSNE ¼ KSNeSN: (45)

PressurepSNE , which was introduced by equation (8.5) in de Boer [2000], in our notations reads pSNE ¼ pf � ps; eSN
is defined by de Boer as the volumetric strain due to the change of pores in size. By looking at equation (45), one
can see that modulus KSN is related to the compressibility of pore space rather than to the total deformation of
the skeleton as assumed by de Boer. Thus, the following identities must be used for comparison of the two

theories: KSN≡ Kφ and K̂ S ≡ Kd as in equations (42) and (38). With these new definitions in mind, the effective
stress coefficient in the true porous media becomes

1� BS 1� φð Þ ¼ 1� Kφ

Ks þ Kφ
1� φð Þ ¼ 1� Kd

Ks
¼ α (46)

where we made use of equation (11). Thus, the effective stress coefficient in constitutive equations of the
theory of True Porous Media coincides exactly with the Biot-Willis coefficient in the effective stress law in
equation (38). Moreover, equation (44), which serves as a definition of bulk modulus K̂ S , is identical to
our equation (11). The apparent discrepancy between Biot’s constitutive equations and the linear
constitutive equations of the theory of True Porous Media stems from the misinterpretation of material
parameters KSN and BS introduced in the latter. Once the correction is made, both sets of constitutive
equations become identical.

The theoretical bulk modulus for elastic materials with various pore geometries was derived in the works of
Christensen [1979], Budiansky and Oconnell [1976], Mackenzie [1950], and many others. Some of the popular
geometries include two-dimensional cracks of various shapes, spheroids (i.e., geometrical shapes obtained
as a result of revolution of an ellipse about one of its axes that has two equal axes and one unequal axis of
symmetry), and tubes with three- or four-sided cross sections in the form of a hypotrohoid (i.e., a geometrical
shape with slightly concave sides and rounded corners) [Mavko et al., 1998; Zimmerman, 1991]. As a rule,
approximations are given for the effective bulk modulus Kpore (see equation (B7) of Appendix B for definition)
related to our modulus Kφ as follows:

1� φ
Kpore

¼ 1
φKφ

þ 1
Ks

: (47)
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Summarizing results for Kpore from Zimmerman [1991] we can write

Kφ ¼ G
φ
�

2 ωþ 1
ω

� ��1

for elliptical tubular pores

1� nλ2

1þ nλ2
for hypotrochoidal tubular pores

2ω2 þ ln 4ω2ð Þ
2ω2 þ 1

for spheroidal pores; ω > 2

8>>>>>>>><>>>>>>>>:
(48)

The incompressible case (1/Ks=0) is chosen here for simplicity of mathematical expressions. Here ω is the
ellipse (spheroid) aspect ratio. For elliptical tubular pores, it is defined as the ratio of the minor to major
axis of symmetry so that ω ≤ 1 with ω=1 for circular cylinders and ω→ 0 for very thin elliptical tubes. For
spheroidal pores, ω is the ratio of unequal axis to the length of one of the equal axes of symmetry. In the limit
ω= 1, spheroidal pores become spheres. Values ofω→ 0 correspond to very thin penny-shaped cracks, while
ω→∞ correspond to infinitely long needle-like cylinders. Parameter n is a positive integer equal to the
number of corners in the hypotrochoidal pore minus one, and λ is a real number (0 ≤ λ< 1/n) responsible
for the roundness of corners. One can see that pores of very different geometries surprisingly all yield the
same functional dependence of the bulk modulus on porosity. Differences in geometries result in a geometric
factor after the leading term G/φ. Hypotrochoidal and spheroidal pores give geometric factors close to 1,
while elliptical pores effectively decrease Kφ in comparison with the reference circular tubular pores considered
in the previous sections. For instance, elliptical pores with an aspect ratio ω=100 lead to φKφ=0.015G, which
reduces the effective bulk modulus by 2 orders of magnitude. Therefore, we suggest a generalized form of
the effective bulk modulus

Kφ ¼ emG
φ

(49)

in which the geometric factor em accounts for the variations in pore geometry and takes values between 4/3 for
spheroidal pores and 2ω for very thin crack-like pores with aspect ratio ω→0 (see also equation (48)). A similar
geometric factor is used in several expressions for effective viscosity that we review in the next section.

4.2. Poroviscosity

To compare with viscous models, we note that in the purely viscous case, fluid and solid compressibility
equations (7) and (8) are trivial, and the matrix compaction equation (9) yields

ps � pf ¼ �ηφ∇kv
s
k : (50)

This equation is often used to explain compaction of partially molten rocks and magma ascent by porous flow
[Hewitt and Fowler, 2008; Mckenzie, 1984; Sumita et al., 1996]. However, there are several thermodynamically
admissible definitions of effective viscosity. One of themdefines effective bulk viscosity, ηb, as the ratio between
the effective pressure and volumetric deformation [Schmeling, 2000; Stevenson and Scott, 1991], i.e.,

pe ¼ ps � pf
� �

1� φð Þ ¼ �ηb∇kv
s
k : (51)

The two effective viscosities ηb and ηϕ are related through the following equation:

ηφ ¼ ηb
1� φ

: (52)

Viscosities ηb and ηφ are identical in a small porosity limit (φ≪ 1); however, care must be taken when comparing
different expressions for bulk viscosities for nonnegligible porosities.

Knowledge about the porosity dependence of effective viscosity is important for understanding the fluid
migration in porous media. Several different expressions have been proposed for the effective bulk viscosity
in the literature. The major difference between them is in the functional form of the porosity dependence of
effective viscosity. Wilkinson and Ashby [1975] and later Carroll [1980a], by considering spherical shells,
obtained the effective viscosity in the form of equation (24) with m=4/3. Hewitt and Fowler [2008], based
on a microscopic cylindrical model, derived effective viscosity in the form of equation (24) with m=1.
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Recently, Schmeling et al. [2012] numerically derived effective shear and bulk viscosities in purely viscous
rocks with singular cavities of various geometries. They showed that spherical and ellipsoidal inclusions
lead to

ηb ¼ c1ηs
c2 � φð Þk

φ
(53)

where parameters c1, c2, and k depend on the melt geometry. For spherical melt pores, c1 = 4/3, c2 = 1, and
k= 1 are proposed [Schmeling, 2000]. Conversion of ηb into ηφ results in equation (24) with m= 4/3.
Bercovici et al. [2001], by considering infinitely long cylinders filled with a viscous fluid that supports shear
stresses, obtained

ηφ ¼ �em ηs þ ηf
φ

(54)

where em is a dimensionless geometry factor. Sramek et al. [2007] ignore the fluid viscosity in equation (54). It
can be seen that our effective viscosity is a special case of equation (54) when the effect of fluid shear
viscosity on compaction can be ignored.

Effective viscosities given byMckenzie [1984], Spiegelman et al. [2001], Stevenson and Scott [1991], and Sumita
et al. [1996] differ from the above result and from each other.Mckenzie [1984] refers to themicroscopic model
of Arzt et al. [1983] for hot isostatic pressing of metal powders, which assumes that during compaction,
initially spherical particles become tetrakaidecahedrons tightly pressed to each other. Spherical pores remain
at each vertex. Due to grain boundary diffusion, matter is transported from the contact between two particles
to the surface of spherical voids; thus,

ηφ ¼ ζ x ¼ ζ 0
3 φ2=3 � 1
� �þ φ2=3 þ 1

� �
ln 1=φ

1� φ2=3
(55)

where ζ 0 is constant depending on the atomic volume, grain boundary thickness, and grain boundary
diffusion coefficient. However, due to poor experimental constraints on effective viscosity, Mckenzie [1984]
assumes that ηb= ζ = const, which gives

ηφ ¼ ζ x ¼ ζ 0
1� φ

(56)

where ζ 0 is a constant reference viscosity. Following Mckenzie [1984], this expression for effective
viscosity appears in Mckenzie [1987], Richter and Mckenzie [1984], and Spiegelman [1993]. Stevenson and
Scott [1991] adopt

ηφ ¼ ηs
1� φð Þφm (57)

where ηs is a constant reference viscosity, andm is a constant viscosity exponent. Spiegelman et al. [2001] use
effective viscosity of the form

ηφ ¼ ζ 0
φc=φð Þm þ 4=3
φcm þ 4=3

(58)

where φc is a “compaction porosity” equal to a fraction of a reference porosity, e.g., (0.1� 0.5)φ0, and m is
constant. Sumita et al. [1996] consider a spherical model for porous media similar to the one used in this
paper. However, they come up with a different result:

ηφ ¼ 4
3
1� φ
φ

ηs: (59)

Takei and Katz [2013], based on a viscous contiguity model, give the following exponential expression for the
effective viscosity in a texturally equilibrated partially molten rock:

ηb ¼ 5=3ηs exp �λ φ� φ0ð Þð Þ (60)

with constants ηs, φ0, and λ≈ 27.
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Our effective viscosity in equation (24)
obtained for cylindrical and spherical
voids can be generalized to other pore
geometries based on poroelastic model
in equation (49) by using the viscoelastic
correspondence principle:

ηφ ¼ em ηs
φ

(61)

where em is a geometric factor (see
equation (48)). Figure 7 shows a comparison
of various expressions for effective viscosity
ηφ (expressions for ηb were converted using
equation (52)). The curves include the
effective viscosity in equation (61) obtained
in this paper for spherical and elliptical
pore geometries, the effective viscosity
(equation (57)) of Stevenson and Scott [1991]
with m=1, the viscosity (equation (59)) of

Sumita et al. [1996], equation (58) from Spiegelman et al. [2001], the effective viscosity (equation (56)) given by
Mckenzie [1984], the viscosity (equation (55)) from Arzt et al. [1983], and the viscosity (equation (60)) from Takei
and Katz [2013]. It is interesting to note that while most of the models predict that effective viscosity decreases
as φ increases, the models from Mckenzie [1984] and Stevenson and Scott [1991] show the opposite trends at
high porosities. This might be explained by the ad hoc nature of equations (56) and (57). The major difference
in equations (61), (57), and (59) is in the 1� φ factor. This factor is responsible for the deviation of the
viscosities of Sumita et al. [1996] and Stevenson and Scott [1991] from our spherical trend. The deviation grows
at higher values of φ (>0.25). Viscosity in equation (58) exhibits a rather weak dependence on parameters.
Here we choose φc=0.5φ0, m=3, and φ0 = 0.01. Our effective viscosity in equation (49) for elliptical pores
with em ¼ 0:2 and the exponential viscosity from Takei and Katz [2013] give very similar predictions in a wide
porosity range. At high porosities, the viscosity of Arzt et al. [1983] approaches these two. The difference
between viscosities at small φ is mainly due to different assumptions on the pore geometry.

4.3. Poroplasticity

Only few theoretical models describe the rheology of compaction in complex nonlinear materials. Among them
are the spherical models of Carroll and Holt [1972] for elastoplastic pore collapse and ofWilkinson and Ashby [1975]
for compaction of composite powders by power law creep. Carroll and Holt [1972], based on considerations of the
simple spherical shell, derived the pore compaction relation for elastic, elastoplastic, and fully plastic stages of
compaction in porous materials with a pressure-insensitive von Mises type of plasticity. Our modeling reproduces
the compaction relation of Carroll and Holt [1972] in a purely plastic regime in the case of pressure-insensitive
plasticity and the porosity equation of Wilkinson and Ashby [1975] and Carroll [1980a] for purely viscous
compaction. The critical pressures for the onset of pore collapse due to pressure-insensitive plasticity
predicted by our model are the same as in Carroll [1980a]. At the same time, our model is a generalization
of Carroll’s elastoplastic model. Our model includes viscosity effects and incorporates two additional types
of plasticity due to Mohr-Coulomb failure and Griffith fracturing. Viscoplastic models of compaction were
developed in the works of Wilkinson and Ashby [1975], Fischmeister et al. [1978], and Storakers et al. [1999].
However, these models were primarily designed for industrial applications of powder compaction and deal
with initial stages of compaction when particles are still disaggregated. Classical viscoplastic models were
primarily designed for nonporous materials and do not include effect of porosity [Chaboche, 2008]. Our model
includes effects of hardening/softening due to compaction and unlike most viscoplastic models accounts for
the viscous deformation below the yield stress.

5. Comparison to Experiments

Empirical compaction relations for the brittle elastoplastic regime are frequently reported in the literature
[Wong and Baud, 2012]. It is widely accepted that the initial elastic stages of compaction can be well

Figure 7. Compilation plot of selected effective viscosities.
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described by an exponential law φ= φ0 exp
(β(p0� pe)) [David et al., 1994; Dong et al.,
2010; Zimmerman, 1991], which results
from the integration of the elastic part of
our porosity equation (6) with effective bulk
modulus equation (49) ( β ¼ 1=emG ). For
sandstones, β is usually in the
range between 0.44 × 10� 3 MPa� 1 and
3.30 × 10� 3 MPa� 1, while for shales
β = (0.41 to 1.30) × 10� 3 MPa� 1 [Dong
et al., 2010]. Assuming that the shear
modulus of pure quartz, which is one of
the major minerals forming sandstones,
is G = 31 GPa; these data lead to em
between 0.01 and 0.08. According to
equation (48), such values would corre-
spond to elliptic pores with aspect ratios
between 0.007 and 0.05. However, with
increasing effective pressure crack-like

pores tend to close. Accordingly, emG is increasing, reflecting the fact that at higher pressures a cylindrical
or spherical model becomes more appropriate.

In the fully plastic regime, ourmodel for pressure-insensitive yielding in equation (29) coincideswith themodel of
Carroll and Holt [1972], which was able to successfully predict the experimental data for a 38% porous tuff and
22%porous aluminum [Carroll, 1980a]. Baud et al. [2000] and Vajdova et al. [2004] showed that the same spherical
model produces the best fit to the experimental data for the onset of pore collapse in porous carbonate rocks. In
the linear viscous limit, our model coincides with the model of Wilkinson and Ashby [1975] for compaction by
power law creep. This nonlinear model showed good agreement with measurements of the hot pressing of
CoO powders. In rocks, most of the measurements focus on effective shear viscosity, while data on effective
bulk viscosity is very scarce. However, all end-members of our model (elastic, viscous, and plastic) have good
experimental support, which support confidence in the full model. Moreover, elastoplastic counterparts of our
viscoplastic equations were able to reproduce low-temperature data from Wong and Baud [2012] for pore
collapse in sandstone (Figure 8). We used our cylindricalmodel to describe the laboratory-measured dependence
of the critical pore collapse pressure on porosity in carbonate rocks and tuffs presented by Vajdova et al. [2012]
and Wong and Baud [2012]. In our model, critical pore collapse pressure is presented as an upper bound in
equations (25) and (30) for pressure-insensitive and dilatant deformation, respectively. For pressure-insensitive
plasticity, yield stress was set to Y=24 MPa. For dilatant failure, cohesion is Y=8 MPa, and the internal angle
of friction is ϕ =32, 7°. Pressure-insensitive yield (dashed line) significantly underestimates critical pressures for
porosities below 18%, while the brittle failure model (black line) is able to reproduce critical pressures for the
onset of pore collapse with a single curve that has just two well-constrained parameters.

6. Conclusions

Model results discussed in this paper belong to two very different parts. The first part deals with fundamental
results, independent of pore geometry, that describe the general mathematical structure of the constitutive
closure relationships, and the second part summarizes the most important findings of the pore-scale models
and micro-macro schemes responsible for effective media theory derivations of bulk compressibility and
viscosity coefficients that appeared in the first part as some unspecified positive coefficients. The independence
of any assumptions about pore geometry of the first part of the paper constrains the general structure of the
mathematical model. The proposed porous viscoelastoplastic model intends to predict three-dimensional
behavior of fluid-rock systems during sedimentary compaction as well as during magmatic and metamorphic
differentiation processes. We aimed at an increased level of coherence in the mathematical principles behind
porous rock deformation. Our unifying mathematical model can be used in modeling of fluid and melt
extraction from the solid Earth at a wide range of temperatures and time scales. The model is based on rigorous
thermodynamicmodeling so that the first and second laws of thermodynamics are enforced. Our thermodynamic
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Figure 8. Comparison of theoretical predictions with laboratory data
for critical pressures for pore collapse in carbonate rocks and tuffs
[Wong and Baud, 2012].
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formulation provides the closure porosity equation, which is essential for compactionmodeling. Other closure
relationships are obtained from the basic principles of continuum mechanics. We used the mathematical
similarity of purely elastic and purely viscous descriptions for nonporous materials known as the viscoelastic
correspondence principle and ensured that such similarity still holds for porous viscoelastic materials. Our
poroelastic constitutive equations are consistent with pore geometry-independent Gassmann’s relations
and the exact effective stress law, and they lead to Biot’s equations in the linear limit. The source of disagreement
between poroelastic constitutive equations by Biot [1956a] and the True Porous Media theory [de Boer, 2000;
Ehlers and Eipper, 1999], which casted doubts on the validity of Biot’s theory, is clarified.

In the second part, the effective elastic bulk modulus and effective pressure- and porosity-dependent bulk
viscosity are obtained from the interpretation of the microstructure. We approximated the porous solid as an
assembly of noninteracting pores with cylindrical or spherical geometry. We show that pressure-insensitive
plastic flow around heterogeneities in viscoplastic rocks leads to an effective exponential creep law. If brittle
permanent deformation accompanies viscous flow at the pore scale, the macroscopic rock behavior
exhibits compaction-decompaction asymmetry. This asymmetry has been shown to cause the formation
of a channeling instability in ductile porous media that provides a potential mechanism for effective
transport in rocks [Connolly and Podladchikov, 2007; Raess et al., 2014].

Appendix A: Thermodynamic Derivation of Poroviscoelastoplastic Equations
for Porous Media

A1. Local Balance Equations

In our description of porous materials we follow the formulation and recipes of classical irreversible
thermodynamics [Jou et al., 2001]. We consider porous material as a two-phase system consisting of solid
and fluid phases in which exchange of heat, momentum, and matter between the phases is possible.
The balance equations for mass, momentum, entropy, and energy for the individual phase in the Euler
representation are given by, e.g., Gyarmati [1970] and Jou et al. [2001]

∂ ρφð Þ
∂t

þ ∇j ρφvj þ qiρ
� �

¼ Qρ (A1)

∂ ρφvið Þ
∂t

þ ∇j ρφvivj þ qijv
� � ¼ Qvi (A2)

∂ ρφsð Þ
∂t

þ ∇j ρφsvj þ qj
s

� � ¼ Qs (A3)

∂ ρφeð Þ
∂t

þ ∇j ρφevj þ q j
e

� � ¼ Qe (A4)

where ρ is the true density of an individual phase (mass of a phase in a unit volume of the same phase); φ is a
volume fraction of a phase in a mixture; vj, e, and s are specific values of velocity, total energy, and entropy
referred to per unit mass, respectively; and ∇j is the component of the del operator. Quantities q j

ρ, q
ij
v , q

j
s , q

j
e

and Qρ, Qvi , Qs, Qe represent fluxes and production rates of mass, momentum, entropy, and total energy,
respectively. Einstein summation convention on repetitive indexes is adopted. Equations (A1)–(A4) must
be written for every individual phase of a mixture. Indexes referring to a particular phase are omitted
whenever we consider this phase independently from the other ones, and they appear explicitly when
we deal with interactions between different phases. In the following we put q j

ρ ¼ 0 to imply a particular
choice of macroscopic velocity, vj, as an appropriate barycentric averaging scheme of an unknown
microscopic velocity field.

A2. Local Equilibrium Hypothesis in a Weak Formulation

Following the recipe of classical irreversible thermodynamics, we assume a local thermodynamic equilibrium
relationship between the infinitesimal increment of the specific internal energy u for each phase and increments
of specific entropy s, specific volume ρ, the equilibrium (elastic) part of phase volume fraction (porosity) φe along
the system trajectory, and the equilibrium (elastic) part of the deviatoric strain rate εeij , namely,

du
dt

¼ gvz þ T
ds
dt

� p
d 1=ρð Þ
dt

þ 1
ρ
τijεeij þ

τ
ρφ

dφe

dt
(A5)
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where T, p, τij, and τ are conjugate thermodynamic variables associated with entropy, density, strain rate, and
volume fraction φ, respectively. Specific quantities are introduced per unit mass. The term g vz is due to
gravitational potential energy. This formulation of local thermodynamic equilibrium for the solid and fluid
phases only is weaker than the Biot’s classical assumption on existence of internal energy potential of the
total two-phase system for the linear poroelastic case.

A3. Thermodynamic Constraints on Fluxes and Productions

So far, we have not made any assumptions about the fluxes and productions in balance equations (A1)–(A4).
In order to obtain thermodynamic constraints on the fluxes and production terms, we substitute the balance
laws for mass, momentum, entropy, and energy in equations (A1)–(A4) into local thermodynamic equilibrium
in equation (A5) and solve the latter with respect to the entropy production Qs obtaining

TQs ¼ T∇jq
j
s � ΦQρ � vi Qvi � ∇jq ij

v

� �þ Qe � ∇jq
j
e � φεeijτij þ pφ∇jvj � ρgφvz þ p �φ� τ �φe (A6)

where Φ= u+ p/ρ� Ts� vivi/2 is the specific Gibbs free energy introduced here merely as a shorthand
notation. The equation (A6) gives the so-called noncompensated heat production rate, i.e., energy
dissipation for a given phase per unit volume and unit time. Entropy production in multiphase media can
arise from interaction between the phases, interaction of the whole mixture with surroundings, and from
the internal dissipative processes within each phase. We decompose entropy production into two parts,
namely, Qs=Qs,intra +Qs,inter. The first of them, Qs,intra, is the intraphase part of the entropy production
defined by heterogeneities locally existing in a phase. These heterogeneities arise from spatial
nonhomogeneous distributions of velocities, temperatures, densities, and so on and yield to gradients
of thermodynamic fluxes of velocity, entropy, temperature, etc. The internal part of entropy production is the
sum of the products of thermodynamic fluxes and the corresponding thermodynamic forces:

TQs;intra ¼ T∇jq
j
s þ vi∇jq

ij
v � ∇jq

j
e � φεeijτij þ pφ∇jvj � ρφgvz (A7)

The second, the interphase part of entropy production,Qs,inter, is a result of interaction of different phases of a
mixture. For each phase, Qs,inter is the sum of the products of the thermodynamic sources and forces

TQs;inter ¼ �ΦQρ � viQvi þ Qe þ p �φ� τ �φe: (A8)

The second law of thermodynamics requires that entropy production of the whole system is nonnegative, i.e.,X
phases

Qs ¼
X
phases

Qs;intra þ Qs;inter
� �

≥0. This is guaranteed if both the intraphase and the interphase parts of the

entropy production of a mixture are nonnegative.
A3.1. Constitutive Equations for Fluxes
The intraphase entropy productions Qs,intra are independent for each phase and therefore must be
nonnegative for every phase regardless of phase interactions. The latter is assured if [e.g., Müller and
Müller [2009], chapter 12]

q j
s ¼ �λ∇jT=T (A9)

qj
e ¼ Tq j

s þ viq
ij
v � vz ẑ

j∫
z

0

g ρφdz (A10)

q ij
v ¼ �φτij þ φpδij þ ẑ i ẑ j∫

z

0

g ρφdz: (A11)

Equation (A9) is the Fourier law of heat conduction, providing that T has the meaning of absolute temperature,
and λ is the heat conduction coefficient. Equation (A10) is analogous to the first law of thermodynamics for
mixtures and states that the flux of the total energy is equilibrated by the heat flux, the mechanical dissipation,
and the work against the gravitational force. Equation (A11) defines additive decomposition of the momentum
fluxes into the partial deviatoric stresses τij acting on a given phase, the pressures, and the stress due to the
gravity. The following choice of the nonequilibrium part of the deviatoric strain rate

εvij ¼ εij � εeij ¼ τij= 2ηð Þ
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gives a Maxwell type of viscoelastic behavior for the shear mode. Here η is the shear viscosity of a given phase.
Summarizing results in equations (A9)–(A11), the intraphase part of the entropy production takes the form

TQs;intra ¼ λ
T

∇jT
		 		2 þ φ

2η

X
i; j

τij2: (A12)

Qs,intra is nonnegative if the heat conduction coefficient, and the viscosities are nonnegative.
A3.2. Restrictions on Productions
The interphase entropy productions Qs,inter reflect interactions between the phase in question and other
phases of the system and may be positive or negative. If there is no heat and matter exchange with the
surroundings of the entire fluid-rock system, then the total entropy production due to interphase interactions

within the mixture must be nonnegative, i.e.,
X
phases

Qs;inter ≥ 0. Up to this point we did not specify the number

and nature of the phases in a mixture; all the equations were written for a single phase. However, our main
interest here is a description of fully saturated (or dry) porous materials, and therefore from now on we
consider two-phase systems consisting of a fluid and a solid. We shall explicitly use superscripts “f” and “s”
when referring to the fluid or solid phase, respectively. At fully saturated conditions φf+ φs= 1, and the
volume fraction of a fluid phase is a usual porosity, which we denote further as φ, so that φf≡ φ and φs≡ 1� φ.
Conservation laws require that there is no net production of mass, momentum, and energy in a closed two-phase

system; therefore, in equations (A1)–(A4), we must set Qf
ρ ¼ �Qs

ρ ≡ Qρ , Qf
vi ¼ �Qs

vi ≡Qvi , and Qf
e ¼ �Qs

e ≡Qe .

Then, interphase entropy production becomesX
phases

Qs;inter ¼ � Φ
T


 �
Qρ þ 1

T


 �
Qe � vi

T

h i
Qvi þ

X
phases

p
T
dφ
dt

� τ
T
dφe

dt

� �
(A13)

where [b] = bf� bs, and d/dt denotes the material time derivative with respect to the relevant phase.

In the following we assume equilibrium mass and energy exchange between the phases, which requires
corresponding terms of the interphase entropy production to be set to zero. This assumption is not
essential but greatly simplifies the algebraic expressions for the following derivations. The input from Qe

in equation (A13) may be eliminated by making a common assumption that temperature variations are
sufficiently slow and that there is no temperature jump between the phases, i.e., T = T f= T s [Bercovici
et al., 2001; Mckenzie, 1984]. Mass exchange, Qρ, may be eliminated by assuming that [Φ] = 0. We assume
additive decomposition of porosity increments into elastic and dissipative parts, which together with
the negativity of entropy production requires that inelastic porosity equation takes the form

dsφ
dt

� dsφe

dt
¼ � pe

ηφ
(A14)

where pe ¼ p� pf is the effective pressure, and ηφ is an effective viscosity. Note that thermodynamics allows
several different definitions of effective viscosity, which would relate either effective pressure pe or differential
pressure ps� pf to porosity changes.

With the assumptions made, the interphase entropy production becomesX
phases

Qs;inter ¼ p� τ½ �
T

dsφe

dt
þ pf∇iφ� τ f∇iφe � Qvi

� � vi½ �
T

þ p½ �2
Tηφ

1� φð Þ: (A15)

Equilibrium porosity compaction is associated with zero entropy production, which requires [p� τ] = 0. We
consider fluids that do not depend on the shape of the pore space containing them, and therefore the local
equilibrium equation (A5) for the fluid phase should not contain the porosity term, i.e., τ f=0. Under this
assumption, the condition [p� τ] = 0 converts to τs= ps� pf. Finally, if we ignore relative accelerations between
the phases and other dynamic effects, entropy producing momentum exchange can be chosen in the form

Qvi ¼ pf∇iφ� β vi½ � (A16)

that appears in a number of previous studies [de Boer, 2000; Mckenzie, 1984]. Thus, the total entropy
production becomes

TQs ¼ λ
T

∇jT
		 		2 þ 1� φ

2ηs

X
i; j

τsij
� �2

þ φ
2ηf

X
i; j

τ fij
� �2

þ β vi½ � � vi½ � þ p2e
ηφ 1� φð Þ : (A17)
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Entropy production is nonnegative if the coefficient of momentum exchange β and the effective viscosity are
both nonnegative. Themain achievement here is not only the nonnegativity of viscosity, but the demonstration
that the choice of positive viscosity is sufficient to guarantee the nonnegative entropy production. Omitting
factors like (1-φ) or φ in the solid density evolution equation would result in such an expression for the entropy
production that would not be possible to make nonnegative by any choice of viscosity.

Appendix B: Calibration of the Poroelastic Model Versus Exact Results

B1. Calibration of Poroelastic Model Parameters Versus Gassmann’s Equation

Equations (9) and (10) represent a pure compliance formulation. The stiffness formulation for the poroelastic
volumetric deformation is as follows:

dp
dt

¼ �Ku ∇kv
s
k þ B∇kq

D
k

� �
(B1)

dpf
dt

¼ �BKu ∇kv
s
k þ

1
α
∇kq

D
k

� �
(B2)

where

Ku ¼ Kd

1� αB
: (B3)

Equations (9) and (B2) give physical meaning to the introduced moduli Kd and Ku as drained (pf= const) and

undrained (∇kqDk ¼ 0) bulk moduli, respectively;

Kd ¼ � 1
∇kvsk

dp
dt

				
pf¼ const

(B4)

Ku ¼ � 1
∇kvsk

dp
dt

				
∇kqDk ¼ 0

(B5)

in full agreement with classical definitions. Substitution of equations (12) and (13) into equation (B3) leads to
the following relationship between Kd and Ku

Ku ¼ Kd þ
1� Kd

Ks

� �2
φ
Kf
þ 1�φ

Ks
� Kd

K2
s

: (B6)

The latter is a well-known Gassmann’s relation that holds for poroelastic media with a homogeneous and
isotropic solid frame [Gassmann, 1951; Guéguen and Boutéca, 2004; Mavko et al., 1998; Smith et al., 2003].
Thus, our constitutive equations are consistent with the exact Gassmann’s equation. Additionally, it can be
shown that the effective bulk modulus Kφ is related to the effective dry rock pore space compressibility,
defined by Mavko et al. [1998] as

1
Kpore

¼ � 1
Vp

∂Vp

∂p

				
pf ¼ 0

: (B7)

The relationship between the two effective bulk moduli of pore space then becomes

1
Kφ

¼ 1� φð Þφ
Kpore

� φ
Ks

: (B8)

Replacing Kϕ in equation (11) with Kpore, we reproduce a well-known relation [Mavko et al., 1998;Walsh, 1965]:

1
Kd

¼ 1
Ks

þ ϕ
Kpore

: (B9)

Identifying Kd and Ku, we notice that α introduced by equation (12) is in fact the Biot-Willis parameter, and B
introduced by equation (13) is the Skempton’s coefficient.

B2. Calibration of Poroelastic Model Parameters Versus Effective Stress Law

Newly introduced poroelastic constitutive equations can be independently validated by the effective stress
law, which is another exact result of the theory of elasticity. The effective stress law states that the drained
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bulk modulus of a porous rock can be obtained from the measurements done on a saturated sample if the
effective pressure is used [von Terzaghi, 1923], i.e.,

Kd ¼ � 1
∇kvsk

dpeff
dt

				
undrained

(B10)

where

dpeff ¼ dp� 1� Kd=Ksð Þdpf (B11)

as was shown by Garg and Nur [1973] and Nur and Byerlee [1971]. It can be seen that the linear version of our
constitutive in equation (9) is a simple reformulation of the two equations (B10) and (B11).

Appendix C: Elastic (Viscous) Deformation of Cylindrical and Spherical Pores

Following Carroll and Holt [1972], we consider a thick cylindrical or spherical shell with inner radius a and outer

radius b as in Figure 1. Uniform pressure rates �p̄ and �pf are specified at the external and internal boundaries
of the elastic shell, respectively. For the viscous model, pressures p and pf are prescribed. Dry conditions are
reproduced when pf=0. In the case of the cylindrical cavity, plane strain conditions are fulfilled.

Imposed external loads produce axisymmetric deformation so that only radial velocity vr is nontrivial, giving
rise to radial and hoop components of strain rates within the RVE

εrr ¼ ∂vr=∂r; εθθ ¼ vr=r (C1)

Note that even though we assumed the absence of shear deformation on a macroscale, deviatoric stresses
are still present on a pore scale. Stresses within the shell are governed by the force balance equation in
the form

∂σrr=∂r þm σrr � σθθð Þ=r ¼ 0 (C2)

where σrr and σθθ are radial and hoop stresses, and (r, θ) are polar coordinates within the RVE. The parameter
m indicates the geometry of a pore so thatm= 1 for cylindrical pores andm= 2 for spherical ones. For elastic
solids, the relation between deformation and a stress state is given by the rate form of Hooke’s law, namely,

εrr ¼ 1

mþ 1ð Þ2GK�
s

�σrr 2m� 1ð ÞK�
s þ G

� �� �σθθ 2m� 1ð ÞK�
s �mG

� �� �
(C3)

εθθ ¼ 1

m mþ 1ð Þ2GK�
s

�σθθ 2m� 1ð ÞK�
s þm2G

� �� �σrr 2m� 1ð ÞK�
s �mG

� �� �
(C4)

where K�
s ¼ Ks þ 2�mð ÞG=3. At the pore scale, we assume linear elasticity even though finite strains may be

large. Integrating equations (C1)–(C4) together with boundary conditions, we obtain

vr ¼ � r
mþ 1ð ÞK�

s

�p̄bmþ1 � �pf amþ1

bmþ1 � amþ1
� 1
2mGrm

abð Þmþ1

bmþ1 � amþ1

�p̄ � �pf� �
(C5)

�σrr ¼ �
�p̄bmþ1 � �pf amþ1

bmþ1 � amþ1
þ abð Þmþ1

bmþ1 � amþ1

�p̄ � �pf
rmþ1

(C6)

�σθθ ¼ �
�p̄bmþ1 � �pf amþ1

bmþ1 � amþ1
� abð Þmþ1

bmþ1 � amþ1

�p̄ � �pf
mrmþ1

: (C7)

Using the correspondence principle, a solution to the linear viscous problem can be obtained from the elastic
solution, giving the following expressions for velocity:

vr ¼ � 1
2mηsrm

abð Þmþ1

bmþ1 � amþ1
p� pf
� �

(C8)

and stresses

σrr ¼ � pbmþ1 � pf amþ1

bmþ1 � amþ1
þ abð Þmþ1

bmþ1 � amþ1

p� pf

r mþ1

σθθ ¼ � pbmþ1 � pf amþ1

bmþ1 � amþ1
� abð Þmþ1

bmþ1 � amþ1

p� pf

mrmþ1

(C9)
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where we assumed that rock grains are viscously incompressible. As can be seen from equations (C5)–(C9),
final solutions depend only on the ratio of two radii a/b; therefore, one of the radii can be chosen
arbitrarily. Then, the second radius of the shell is determined by the porosity of the macroscopic rock volume,
i.e., φ= (a/b)m + 1. In order to account for shear-enhanced compaction, nonisotropic analytical solutions for an
isolated void can be used as is suggested in Yarushina et al. [2010] and Yarushina and Podladchikov [2007].

In the effective media theory that we use here to obtain macroscopic constitutive relations, it is assumed that
macrostress is the volume average of the stress field within an RVE [Christensen, 1979], i.e.,

σij ¼ 1
V ∫

V

σ ijdV (C10)

where V is the volume of an RVE. For cylindrical (spherical) geometry considered here, V ¼ 2m
mþ1 πb

mþ1 .
The macroscopic total pressure is thus related to microscopic stresses as

p ¼ � σkk
3

¼ � 1
3V ∫

V

σkkdV ¼ � 1
3V ∫

V

∂
∂xj

σkjxk
� �

dV ¼ � 1
3V ∫∂V σkjxknjdS (C11)

where ∂V is the boundary of an RVE, and nj are the components of the unit vector normal to ∂V. Summation

over repetitive index k is assumed. Here we used the divergence theorem and identity σkk ¼ ∂
∂xj σkjxk
� �

. For a

cylindrical problem, σzz= (σrr+ σθθ)/2. With this in mind and using the fact that constant radial stress is
prescribed at the boundary of RVE defined as r= b, macroscopic total pressure becomes

p ¼ � 1
mþ 1ð ÞV ∫

∂V

rσrr dS ¼ σrr jr¼b

mþ 1ð ÞV ∫
∂V

bdS ¼ σrr jr¼b: (C12)

Equation (C12) shows that total pressure has to be prescribed at the external boundary of an RVE as a boundary
condition for radial stress.

Appendix D: Viscoplastic Deformation of Cylindrical and Spherical Pores

In porous materials, plastic yielding will concentrate around pores. For modeling of viscoplastic deformation,
we consider the same spherical (cylindrical) model as before (Figure 1). Viscous deformation of the solid
mineral grains is assumed to be incompressible. Before plastic flow is initiated, the deformation of the shell
is viscous. It is defined by equations (C8) and (C9). When viscous stresses reach a certain yield criterion, a
circular plastic domain of radius c starts to grow around the cavity (Figure 3). From that point, two different
domains must be distinguished. In the plastic domain surrounding the cavity, stresses can be found
independent of kinematics. Experiments show that the failure envelope in rocks is nonlinear and exhibits
three distinct modes (Figure 2) [Escartin et al., 1997; Hirth, 2002; Jaeger et al., 2007]. At low confinement,
failure is sensitive to the mean normal stress, while with increasing confinement, dependence on the
normal stress decreases until failure is almost nondilatant. In the tensile region, which corresponds to
generation and growth of tensile fractures, the failure envelope is closed with a cap. For mathematical
simplicity, here we use a piecewise linear approximation of the real envelope that consists of the
Mohr-Coulomb criterion for dilatant brittle failure, the von Mises (Tresca) criterion for nondilatant failure,
and the vertical limiting line for tensile Griffith-type fracturing. Von Mises (Tresca) and Mohr-Coulomb
criteria can be represented as follows [Yu, 2006]:

σrr � κσθθ ¼ Y� þ κ � 1ð Þpf : (D1)

For pressure-insensitive deformation, κ = 1 and Y* = Yξ are the yield limits for pure shear in the case of
cylindrical pores and half of the yield limit for simple tension in the case of spherical voids. The parameter
ξ indicates the sign of loading (ξ = 1 for compaction and ξ =� 1 for decompaction). For dilatant failure,
parameters κ and Y* are expressed through cohesion Y and internal angle of friction ϕ of the rock mineral
grains as follows:

κ ¼ 1� ξ sinϕð Þ= 1þ ξ sinϕð Þ (D2)

Y� ¼ 2Yξ cosϕ= 1þ ξ sinϕð Þ: (D3)
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Tensile fracturing is initiated when the Griffith failure criterion is satisfied [Jaeger et al., 2007; Yarushina and
Podladchikov, 2010]:

σθθ ¼ Y � pf : (D4)

Here Y is the uniaxial tensile strength. In the plastic region, simultaneous solution of force balance equation (C2)
and yield criterion in equation (D1) or equation (D4) gives

σrr ¼ �pf � 2mYξ ln r=a; σθθ ¼ �pf � 2Yξ 1þm ln r=að Þ; (D5)

for pressure-insensitive deformation,

σrr ¼ �pf þ Y�

κ � 1
a=rð Þm 1�1=κð Þ � 1

� �
; σθθ ¼ �pf þ Y�

κ � 1ð Þκ a=rð Þm 1�1=κð Þ � κ
� �

; (D6)

for dilatant brittle deformation, and

σrr ¼ �pf þ Y 1� a=rð Þmð Þ (D7)

for microfracturing.

In the viscous region, one has to fulfill force balance in equation (C2), kinematical relationships in equation (C1),
and Newton’s viscous law, leading to

σrr ¼ A� Aþ pð Þ b=rð Þmþ1

σθθ ¼ Aþ Aþ p
m

b=rð Þmþ1

vr ¼ b
Aþ p
2mηs

b=rð Þm:
(D8)

Across the viscoplastic boundary, stresses must be continuous, which allows us to determine the unknown A
and the plastic radius c. For von Mises (Tresca) materials

A ¼ �p� 2m
mþ 1

Y�ξφ c=að Þmþ1;

and the plastic radius is given by the solution to the equation

pe=Yj j ¼ 2m= mþ 1ð Þ � 1þ ln c=að Þmþ1 � φ c=að Þmþ1� �
: (D9)

For Mohr-Coulomb materials,

A ¼ �p� m
mþ 1

Y�φ
κ

c=að Þ1þm=κ;

and the equation for c reads

1þm=κ
mþ 1

c=að Þm 1=κ�1ð Þ þ m
mþ 1

κ � 1
κ

φ c=að Þ1þm=κ ¼ 1� κ � 1ð Þ pe
Y� : (D10)

For materials with microfracturing,

A ¼ p

1þ φ c=að Þmþ1 � φ
pf � Y

c=að Þ�m�1 þ φ

where c can be found from equation

m c=að Þmþ1φ� mþ 1ð Þ 1þ pe=Yð Þ c=að Þm þ 1 ¼ 0 (D11)

The velocity distribution in the plastic domain is found from the plastic flow rule, and the assumption on
additive decomposition of the total strain rate, εij, into plastic and viscous parts

εprr=ε
p
θθ ¼ εrr � εvrr

� �
= εθθ � εvθθ
� � ¼ �m=ς (D12)

where ς =1 for Tresca and von Mises materials and

ς ¼ 1� ξ sin ψð Þ= 1þ ξ sin ψð Þ (D13)
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for Mohr-Coulomb friction. For Griffith material, we use the simplifying assumption that the generation
of new fractures does not contribute to the volume change, in which case ς = 1 in equation (D12).
Substitution of viscous strain rates by stresses in equation (D12) according to Newton’s law results in

ς
∂vr
∂r

þm
vr
r
¼ ς � 1

5�mð Þηs
σrr � σθθð Þ:

Integration of this equation gives a radial velocity of the form

vr ¼ � Y�ξ
mþ 1ð Þηs

cmþ1

r m
r ≤ cð Þ (D14)

for pressure-insensitive materials (ς = 1) and

vr ¼ � Y� a=rð Þm 1�1=κð Þr
2 mþ 1ð Þκ2γηs

c=rð Þγ κ þmð Þ þ γ� 1ð Þκ �mð Þ r ≤ cð Þ (D15)

for dilatant brittle deformation. Here

γ ¼ 1þ 1=κ þ 1=ς � 1ð Þm: (D16)

During microfracturing, velocity in the plastic zone is given by equation (D8) due to assumed incompressibility.
Viscoplastic deformation will continue as long as the plastic zone does not occupy the entire domain. The
moment this happens corresponds to the full plastic pore collapse. Conditions for critical pressures at which this
happens can be found from equations (D9) and (D10) by putting c= b.
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