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Abstract

A procedure based on the finite element method is suggested for modelling of 3D

hydraulic fracturing in the subsurface. The proposed formulation partitions the

stress field into the initial stress state and an additional stress state caused by pres-

sure build-up. The additional stress is obtained as a solution of the Biot-equations

for coupled fluid flow and deformations in the rock. The fluid flow in the fracture

is represented on a regular finite element grid by means of “fracture” porosity,

which is the volume fraction of the fracture. The use of the fracture porosity al-

lows for a uniform finite element formulation for the fracture and the rock, both

with respect to fluid pressure and displacement. It is demonstrated how the frac-

ture aperture is obtained from the displacement field. The model has a fracture

criterion by means of a strain limit in each element. It is shown how this criterion

scales with the element size. Fracturing becomes an intermittent process and each

event is followed by a pressure drop. A procedure is suggested for the computa-

tion of the pressure drop. Two examples of hydraulic fracturing are given, when

the pressure build-up is from fluid injection by a well. One case is of a homoge-

neous rock and the other case is an inhomogeneous rock. The fracture geometry,

the well pressure, the new fracture area and the elastic energy released in each

event are computed. The fracture geometry is three orthogonal fracture planes in

the homogeneous case and it is a branched fracture in the inhomogeneous case.
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1. Introduction

Hydraulic fracturing is the coupled dynamics of fracture and fluid flow, where

the rock fractures because of an increasing pore fluid pressure [17]. It is a process

that is commonly used by the petroleum industry to enhance the flow properties of

the near well region [13]. The injection fluid often contains proppants that props

up the fractures after the injection has stopped. Hydraulic fracturing is necessary

in the production of the gas from low-permeable shales [6]. Another example is

the use of hydraulic fracturing to create conductivity between injection and pro-

duction wells in geothermal systems [10, 27]. Hydraulic fracturing can also have

unwanted effects, like for instance leakage of natural gas into the groundwater

from shale gas operations [20]. Another example is safe storage of large quan-

tities of CO2, which requires injection scenarios that do not fracture the sealing

rocks above the reservoir [26, 21]. It should be mentioned that hydraulic fractur-

ing occurs naturally in the subsurface as a mechanism that releases fluids during

pressure build-up over geological time [31, 37]. Other examples are melt segre-

gation and eruption in the crust [16], melt intrusion as sills and dykes [32], mud

volcanos and hydrothermal megaplumes [18].

The propagation of hydraulic fractures can be observed with passive seismic mon-

itoring, and the seismic events can be correlated with the well pressure and the

injection rate [39, 28, 24, 30, 29]. Injection tests have shown a nearly flat well

pressure for a constant injection rate [30, 29]. On the other hand, the same well

pressure curves have the expected fall-off shape when injection stops. The nearly

flat well pressure observed during injection cannot easily be explained as com-

pressible Darcy flow, in the same way as the fall-of curves. Seismic mapping

shows that hydraulic fracturing is an intermittent process and that the events fill

the length interval between the injection point and the seismicity front [29, 25].

Therefore, it is difficult to map the shape of the fracture. Another challenging as-

pect with respect to fracture-modelling is the rough surfaces of the fracture walls

and the non-evenly distributed flow between them [3, 5, 2].

There are several 3D models of hydraulic fracturing [7, 8, 22]. These modelling
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approaches have in common that they assume that fracturing takes place in a given

plane, like for instance the reservoir interval of a vertical plane through the injec-

tion point. The models are often based on analytical expressions for the coupling

of fracture fluid pressure and the fracture width and the leak-off rate into the rock.

They can be viewed as 3D extensions of the pioneering analytical 2D models of

hydraulic fracturing, like the PKN- and the GdK-models, see Geertsma [12] for

a review. There are also 3D models of hydraulic fracturing based on the distinct

element method, where the forces on each grain in the rock ensemble is accounted

for [1].

A finite element approach is here suggested for the modelling of hydraulic fractur-

ing in 3D. The model is an extension to 3D of a similar model that was developed

for 2D [38]. The model is based on the Biot-equations for the deformations of the

rock caused by gradients in the fluid pressure. The fracture is represented on the

same regular grid as the rock by means of “fracture porosity”, without any special

regridding. The fracture porosity is the volume fraction of the fracture in a rock

volume. It is possible, by means of the fracture porosity, to make a uniform finite

element formulation for the rock and the fracture, both with respect to the fluid

pressure and displacement. This model has a fracture criterion based on element

strain. An element breaks, and the fracture propagates, when the strain computed

at the center of an element exceeds a strain limit.

There are several new features in the 3D implementation, compared to its 2D

predecessor. The failure criterion in 3D is based on the strain in the center of each

element. The 2D model had a failure criterion based on the strain of the element

sides, which are bonds that connect the nodes. This latter concept, which is widely

used by simple fracture models in physics, does not easily generalize to 3D. It is

now explained how the stress state is divided into an initial state that includes the

gravity, and the difference from the initial state, which is caused by fluid injection

from a well. It is also explained how the full effective stress state can be used in a

Mohr-Coulomb failure criterion. The fracture width is needed in the permeability

function, and a procedure is suggested for obtaining the fracture width (aperture)
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from the displacement field for non-planar fractures. Finally, it is demonstrated

that this approach works equally well in 3D as in 2D.

The paper is organized as follows: The partitioning of the stress into the initial

stress state and the additional stress state caused by fluid injection is explained

first. A presentation of Biot equations for the rock is followed by a derivation of

the pressure equation for the fracture, and a discussion of the numerical solution

of the coupled system of equations. The fracture criterion is presented, before a

demonstration and validation are given of the computation of the fracture aperture.

The pressure drop following a fracture event is explained, the scaling of the strain

threshold with grid size is shown, before two cases studies are presented – the

hydraulic fracturing of a homogeneous rock and of an inhomogeneous rock.

2. The stress state

The stress in the rock is denoted σij and it is a solution of the equilibrium equations

∂σij
∂xj

= ̺b g δi3 (1)

where ̺b is the bulk density of the rock and g is the gravitational acceleration [17].

The indices i and j run over the spatial directions, and they can be either x, y and

z, or 1, 2 and 3, where x = 1, y = 2 and z = 3. Einstein summation convention

is applied, by assuming summation over each pair of equal indices. The stress

state in the subsurface is divided into two parts – the initial stress state σ
(0)
ij and

the difference from the initial state, σ
(1)
ij , which is caused by fluid injection. We

therefore have that

σij = σ
(0)
ij + σ

(1)
ij (2)

The initial stress state is a solution of the equilibrium equations (1), which also

fulfills the boundary conditions before fluid injection starts.

We will not deal with what kind of rheology or processes that have caused the

initial state of stress. It is taken to be the result of time and temperature dependent
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visco-plastic rheology that has been acting over millions of years. Furthermore,

the rock is assumed to be initially free of elastic deformations. All elastic defor-

mation is therefore the result of fluid injection. We are in this study interested in

tensile (Mode I) hydraulic fracturing. The initial stress state is therefore taken to

be isotropic, where the stress in the vertical direction is the weight of the overbur-

den

σ(0)
zz =

∫ z

0

̺b(z)g dz (3)

and where the initial stress is the horizontal plane is

σ(0)
xx = σ(0)

yy = Aσ(0)
zz (4)

σ(0)
xy = σ(0)

yz = σ(0)
zx = 0 (5)

where A = 1. The surface is at z = 0. The initial stress state given by (3) and (5)

does not depend on the lateral position (x, y) and it is seen to be a trivial solution

of the equilibrium equations. An anisotropic initial stress state, where A 6= 1,

can lead to shear fracturing when the pore pressure increases. Then, the fracture

condition is normally given by a Mohr-Coulomb fracture envelope.

Our concern here is the difference from the initial stress state caused by changes

in the fluid pressure. It is straightforward to subtract the initial state of stress from

the force balance (1) and we are then left if the following equilibrium equations

for the stress difference
∂σ

(1)
ij

∂xj
= 0 (6)

We notice that the effect of gravity resides entirely in the initial stress state. It is

assumed that the boundaries are sufficiently far away from injection well to feel

the effect of fluid injection. The stress at the boundaries therefore stays unchanged

during the well operation. Boundary conditions for equation (6) are therefore a

stress difference equal to zero.
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3. The Biot equations for the rock

The initial stress state is the result of the geohistory, which includes a number of

time and temperature dependent mechanical and chemical processes acting over

millions of years. The changes in the stress state caused by well operations over

a short time span, from minutes or hours to a few years, are assumed to follow

Biot’s poro-elastic equations for coupled fluid flow and deformations in porous

media [4, 36]. The deformations are then caused by the effective stress defined as

τij = σij − αpfδij (7)

which is the stress σij minus the pore fluid pressure pf multiplied with the Boit

coefficient α. The fluid pressure is now written as the sum of the initial fluid

pressure p(0) and the difference from the initial fluid pressure, p(1), as

pf = p(0) + p(1) (8)

The effective stress (7) can then be divided into two parts – one part with respect

to the initial state and a second part that is the difference from the initial state

τij =
(

σ
(0)
ij − αp(0)δij

)

+
(

σ
(1)
ij − αp(1)δij

)

(9)

where τ
(0)
ij = σ

(0)
ij − αp(0)δij is the effective stress in the initial state and where

τ
(1)
ij = σ

(1)
ij − αp(1)δij is the effective stress caused by recent changes in the fluid

pressure. We are interested in the deformations caused by the difference in effec-

tive stress from the initial state. Poro-elasticity relates these deformations to the

Lamé-equations

τ
(1)
ij = −

(

λǫkkδij + 2Gǫij

)

(10)

where ǫij is the strain

ǫij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)

(11)

and where ui is the displacement in the i-direction [17]. The minus sign is intro-

duced in the stress-strain relation (10) in order to have compression corresponding
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to positive effective stress and tension to negative effective stress. The Lamé pa-

rameters λ and G are given by Young’s modulus E and Poisson ratio ν as

λ =
νE

(1 + ν)(1− 2ν)
and G =

E

2(1 + ν)
(12)

By inserting the stress difference

σ
(1)
ij = −

(

λǫkkδij + 2Gǫij

)

+ αp(1)δij (13)

into the equilibrium equation (6) together with the strain (11) give the equation

for the displacement field

(

λ+G
) ∂2uk
∂xk∂xi

+G
∂2ui

∂xk∂xk
= α

∂p(1)

∂xi
(14)

This equation shows that the displacements in the rock are caused by the gra-

dient of the pressure difference p(1). Another point is that equation (14) has no

explicit time dependence. The time dependence follows from the implicit time

dependence of the pressure.

The displacement field need to be specified for at least one node in order to make

a numerical solution. Fixed nodes (zero displacement) at the four corner nodes of

the surface plane are used in the current numerical implementation.

4. The pressure equation

The equation for the fluid pressure in the Biot model is [4, 36]

S
∂p

∂t
−∇

(k

µ
(∇p− ̺fg nz)

)

= −α∂ǫ
∂t

(15)

where S is the specific storage coefficient, ǫ = ǫ11+ ǫ22+ ǫ33 is the volume strain,

k is the permeability and µ the viscosity. The initial fluid pressure is now taken to

be hydrostatic,

p(0) =

∫ z

0

̺fg dz (16)
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where the basin has a horizontal surface at zero hydrostatic pressure. Inserting the

pressure (8) into the equation (15) gives a pressure equation for p(1) as

S
∂p(1)

∂t
−∇

(k

µ
∇p(1)

)

= −α∂ǫ
∂t

(17)

The pressure equation is solved with zero initial pressure. Boundary conditions

are zero pressure at the top surface and with all other boundaries closed for fluid

flow.

We noticed from the Lamé equations (10) that non-zero displacements result from

the pressure gradient ∇p(1). The pressure equation (15) shows that changes in the

volume-strain act as a source term for fluid pressure.

The appendix gives the details of the finite element formation of Lamé equa-

tion (10) and the pressure equation (17).

5. A pressure equation for the fracture

The pressure equation (15) covers only intact rock, not the fracture. An expression

for conservation of fluid mass in the fracture is the starting point for a pressure

equation that covers the broken elements. Figure 1 shows a regular grid with a

fracture and the fractured elements. The mass balance for fluid in the fracture is

d

dt

∫

VF

̺f dV +

∫

∂VF

̺fvD · n dA = Ṁin (18)

where VF is the fracture volume, n is the outward unit normal vector on VF and

where Ṁin is the mass rate of injection. The injection term Ṁin is equal to the

leak-off through the fracture walls (second term on left-hand-side) added to the

rate of change of fluid mass stored in the fracture (first term on the left-hand-

side). The mass balance (18) has two end-members, where one is an impermeable

rock, and the other is a permeable rock. There is no leak-off from the fracture in

the impermeable case, and the second term in equation (18) is zero. The injection

rate is therefore equal to the rate of storage in the fracture. The opposite case is a
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permeable rock, where the leak-off dominates the storage rate. The leak-off is in

this case almost the same as the injection rate.

The mass balance for fluid in the fracture can also be written for a single fractured

element as
d

dt

∫

VE

φF̺f dV +

∫

∂VE

̺fvD · n dA = ṀE (19)

where VE is the volume of the element, ṀE is an eventual source/sink term, n

is the outward unit normal vector of the element and where φF is the sum of the

element porosity and the “fracture porosity”. The fracture porosity is the volume

of the fracture within the element divided by the element volume (VF/VE), and

φF becomes

φF = φ+
VF
VE
. (20)

The fracture volume is obtained as VF = V ′

E−VE , where V ′

E is the element volume

when the displacement field is added. (VE is the volume of the unloaded element.)

The time-derivation goes through the integration sign in equation (19), because the

element volume VE is constant. The Gauss theorem converts the surface integral

in equation (19) to a volume integral, which then gives the following pressure

equation for the fractured elements

φF cf
∂p

∂t
−∇

(kF
µ
∇p
)

= −∂φF/∂t (21)

where cf is the fluid compressibility. The well element has in addition a source

term Qin/VE , where Qin is the injection rate (fluid volume per time). The volume

flux along the fracture is now given by the Darcy flux from fractured to non-

fractured elements.

The permeability of the fractured elements is the arithmetic mean of the rock per-

meability and the parallel plate permeability kp = w2/12, where w is the average

aperture of the element. The extension of an element is found for all three spa-

tial directions. The maximum opening is used in the permeability function, when

an element is extended in more than one direction. The average permeability is
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taken to be scalar, which normally assures good communications along the frac-

tures, even in the case of a corner element in a right angled bend.

6. The coupling of pressure and displacement

The pressure- and displacement equations are solved decoupled (or sequential)

since that gives a simple numerical formulation and a large computational gain

compared with a fully coupled numerical solution. On the other hand, a decoupled

(or sequential) approach may lead to an instable formulation, [19]. It is the source

term α ∂ǫ/∂t in the pressure equation (17) that may lead to instability problems

if the flow and the mechanics are tightly coupled. This may be the case for the

fractured elements that are assigned a very low or a zero Young’s modulus.

In the current applications we are interested in hydraulic fracturing by fluid injec-

tion. The fluid pressure and the fluid flow in the fracture are then dominated by

the injection rate from the well element. The fluid pressure will be nearly constant

in the fracture in case of a “large” fracture permeability. The source term α ∂ǫ/∂t,

which accounts for storage of fluid in the fracture, represents a negligible volume

rate, when compared to the volume flow in the fracture that leaks-off into the rock.

A simple way to achieve unconditional stability is to approximate the source term

by zero (α ∂ǫ/∂t ≈ 0) for all elements. The displacement field then becomes

a slave of the pressure field. One could restrict the approximation to only the

fractured elements, but numerical testing indicates that this term has negligible

impact on the results compared to the parameters that control the intermittent

nature of the growth of the fracture. The main feed-back from the displacement

on the pressure is the fracture propagation.

This approximation is inappropriate for an impermeable rock or extremely low

permeable rock, where very little or no fluid leaks off into the rock, and where

most of the injected volume remains in the fracture.

There are several ways to implement numerically the sequential coupling of pressure-
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and displacement equations. Kim, Tchelepi and Juanes [19] analyze the stability

of four different schemes for sequential coupling. They strongly recommend the

“fixed-stress” sequential method, where the flow problem is solved first with a

frozen total mean stress field.

7. Fracture criterion

Fracture nucleation, propagation and interaction in heterogeneous media have

been studied with simple models like the random fuse model and models made

of springs and beams, see Herrmann and Roux [14] for a review. These models

have later evolved into the beam model and the spring model of hydraulic fractur-

ing, [34, 33, 35] and [11], respectively. The material strength in these models is

represented by the strength of bonds like fuses, springs and beams. It is therefore

easy to represent heterogeneous materials with these models.

A 2D finite element model of hydraulic fracturing, based on the Biot equations

for the rock, which is using bond strength, was proposed by Wangen [38]. The

sides of the finite elements define the bonds and they have a strength threshold

in terms of strain, just as for springs and beams. A bond will break when it is

stretched beyond its strength threshold. The use of the element sides as bonds

makes fracture propagation straightforward in 2D, because a broken bond opens

the fracture into a new element.

Element sides used as bonds in 2D does not easily generalize to 3D, since an ele-

ment side is an area in 3D. An alternative to “bond”-strength is a strain threshold

assigned directly to the elements. The fracture criterion is formulated as

max(ǫxx, ǫyy, ǫzz) ≥ ǫfrac, (22)

where ǫfrac is the strain threshold, and where the strain is computed at the center

of the element. The strength threshold will be the same in all directions in case of

isotropic rock properties. An element gets almost zero Young’s modulus, fracture

permeability and fracture porosity when it changes state from rock to fracture.
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The propagation of one fracture can be modelled by looping over all nearest neigh-

bor elements to the fracture. The over-stretched neighbor elements break and be-

comes a part of the fracture. Testing shows that this criterion gives similar results

as the bond-strength criterion, when applied to 2D.

The criterion (22) does not represent shear fractures, although shear strain could

be the result of stress interactions of a branched fracture. It is possible to introduce

a Mohr-Coulomb failure criterion and allow for shear fractures. Such a criterion

is straight forward to implement on an element basis, where the effective stress at

the center of the element decides if shear fracture takes place.

It is worth noting that a Mohr-Coulomb failure criterion is based on the full effec-

tive stress, τij = τ
(0)
ij + τ

(1)
ij , which involves the initial stress- and pressure states.

The Mohr-Coulomb failure criterion then generates tensile fracture in a plane that

is normal to the least compressive stress. The modelling becomes simplified if the

Cartesian coordinate system is aligned with the principal stress directions. Shear

fracture will not be discussed any further in this study, since it is restricted to

tensile fracturing.

8. Validation of the stress solution

A fluid pressure in a flat fracture pushes the fracture walls apart. There is a simple

analytical solution for the aperture in case of a circular fracture in an infinite,

impermeable and linear elastic rock. The fracture then becomes an ellipsoid with

the aperture given as

w(r) = wmax

√

1− (r/a)2 and wmax =
2(1− ν)pa

πG
(23)

where wmax is the maximum aperture at its center, when p is a constant fluid pres-

sure in the fracture [17]. The fracture has the radius a and the radial position from

its center is r. This is the case of an impermeable rock, with zero leak-off, where

the fluid pressure is zero everywhere in the pore space, but non-zero at the fracture
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walls. Figure 2 shows the results of a numerical computation of the fracture sur-

face when a = 15 m, E = 50 GPa, ν = 0.25 and fracture pressure p = 100 MPa.

The plotted surface is the z-coordinate added to the displacement field uz = w(r).

The aperture is obtained from the displacement field of the nodes of the fracture

surface on the regular grid. The figure shows the fracture surface when the dis-

placement field is multiplied by a suitable factor to clearly show the ellipsoid.

A comparison of the numerical solution and the exact ellipsoid solution (23) is

shown in figure 3. The figure compares the numerical displacement field and the

exact one for a vertical plane through the center of the fracture. The comparison

is good although it is not exact. Higher resolution and better griding could have

improved the match.

The fracture walls are obtained by moving the displacement field to the center

of element. Figure 3 shows that the numerically computed displacement field

gives the aperture and the fracture shape even though the fracture is represented

by elements of a regular grid with macroscopic or mesoscopic size. The aperture

was computed using an element thickness of 2 m. Figure 2 also shows the stress

enhancement for the elements at the tip of the fracture.

The numerical pressure solution has been tested separately, by comparing it with

Theis time-dependent solution for well-pressure [38]. It is difficult to validate the

dynamical behaviour of the model, because of intermittent fracturing. Analyti-

cal models or semi-analytical models for hydraulic fracturing have a continuous

fracture growth. Continuous fracture growth gives that fracture properties like

length, width and pressure are proportional to (time)n where n is a model and

property dependent exponent. These exponents are in the range between 0 and

1, and the exponents for length and width add up to 1 for models with zero or

little leak-off, [9]. It is uncertain how one could make the current model approach

the continuous models with their assumptions, in order to compare the dynamical

behaviour.
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9. Pressure drop during fracture propagation

Fracturing and the fracture propagation are assumed to take place instantaneously.

The volume of fluid in the fracture is therefore the same right after a fracture event

as it was right before. Fracture propagation leads to a larger fracture surface, and a

lower fluid pressure is therefore needed to keep the fracture open. A constant fluid

volume in the fracture implies that an increasing fracture surface gives a reduced

fracture aperture. It is therefore an instant pressure drop in the fracture following

propagation.

It is possible to compute the fracture volume and thereby the pressure drop that

follows a fracture event. We assume that the fracture is sufficiently permeable

for variations in the fluid pressure inside the fracture to be small. A constant

fluid pressure is assigned to the nodes along the fracture surface. The equilibrium

equations are solved for the displacement field. The displacement field at the

nodes is used to compute the volume change of the elements. The total fracture

volume is the volume difference between the current and the initial state of the

fractured elements. The fracture volume must remain unchanged for an event if

the fluid volume is unchanged, assuming that the fluid fills the fracture completely.

A Newton scheme is used to compute the pressure drop in the fracture. Just two

iterations are normally needed because the fracture volume and the fracture fluid

pressure are almost linearly related.

10. Strain threshold and grid size

The fracture criterion (22) is by means of strain computed in the center of the

elements. If strain in an element exceeds the breaking threshold, as given by

equation (22), the element then changes properties from rock to fracture. The

most strained elements are the ones at the tip of a fracture, as shown in figure 2.

Figure 4 shows the strain (ǫyy) and the effective stress (τyy) at the tip of a 2D linear

fracture aligned with the x-direction. There is a clear enhancement of the strain

and the effective stress in the element at the fracture tip.
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The strain and the effective stress at the fracture tip is dependent on the element

size. How stress and strain scale with the element size is studied numerically

using square elements of different sizes. The element size is reduced as l = l0/N ,

when N increases as a power of 2 (N = 1, 2, 4, . . ., 64). The strain log(ǫN/ǫ1)

and effective stress log(τN/τ1) are plotted in figure 5 as a function of log(N),

where ǫN and τN are the stress and strain for resolution N , respectively, in the

y-direction. Figure 5 shows that the stress and strain at the fracture tip follow the

line 1
2
log(N), which can be used to scale the breaking threshold with respect to

the element size.

The scaling shown in figure 5 is consistent with the stress/strain singularity at the

tip of a sharp fracture, where the stress is given as σyy = KI/
√
2πx, where KI

is the stress intensity factor and x is a short distance from the fracture tip into

the rock. Assuming that σN scales the same way, σN ∼ 1/
√

l0/N , gives that

log(σN/σ1) =
1
2
log(N). The scaling of stress and strain shown in figure 5 for the

element at the fracture tip is therefore the stress singularity of a sharp fracture in

a linear elastic medium.

11. Homogeneous cases

The hydraulic fracture model is demonstrated with two cases – where one is a

homogeneous rock and the other is an inhomogeneous rock. The inhomogeneity

is in terms of rock strength. The subsurface is represented by cube of size 2075×
2075 × 2075 m3 where the injection point is at the center of the cube (at the

depth 1037.5 m). The rock is gridded with two element sizes, where the volume

75×75×75 m3 around the injection point is gridded with cells of size 5×5×5 m3.

The fracturing takes place in this inner cube. The grid surrounding the inner cube

is represented with elements of the size 250× 250× 250 m3. The lager elements

serves to keep the boundaries away from the near well area where fracturing takes

place. Both cases have in common the rock porosity φ = 0.2, rock permeability

k = 1 · 10−17 m2, fluid viscosity µ = 1 · 10−3 Pa s, fluid compressibility c = 1 ·
10−8 Pa−1, rock Young’s modulus E = 10 GPa, fracture Young’s modulus 0.5 Pa,
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Poisson ratio ν = 0.25, and the injection rate Qin = 100 l min−1. The injection

starts at t = 0 and the rate is kept constant until the end of the experiments.

The homogeneous case has the same fracture criterion ǫfrac = 1/2 · 10−4 for all

cells of size 5 m. Figure 6 shows the fractures for the homogeneous case after

13 hours of injection, where three orthogonal wings have propagated symmetri-

cally away from the injection point. Figure 7a shows the well pressure (at the

injection point) as a function of time. The number of broken elements in each

event is plotted in figure 7b and the elastic energy released during the events is

shown by figure 7c. It should be noted that the elastic energy does not include

for the initial stress state, only the linear elastic stress. The number of broken ele-

ments becomes the new fracture surface area when it is multiplied with the area of

an element side. Figure 7 shows that the fracture propagates in a few events, where

a number of elements break in each event. The coloring of the fractured elements

in figure 6 shows the time when the cells broke during propagation. The perimeter

of the wings has acquired one new layer of cells during each fracture event. The

distance away from the well therefore increases by one cell in the directions of the

axes in each event. This is in agreement with the 2D model of Wangen [38] where

the homogeneous case gave a linear fracture that grows symmetrically away from

the well by the distance of a cell in each fracture event.

At this point it should be mentioned that the time step is set to a minimum value

when time stepping starts at t = 0 or restarts after a fracture event. The minimum

time step is 1 s and it is multiplied with the factor 2.5 after use. An increasing

time step makes it possible to pick up pressure transients and at the same time do

time stepping through long periods with no fracture events. The time steps used

in the current case are marked by the bullets on the curve in figure 7a. Since the

time steps are getting larger and larger until the fracture criterion is met, it implies

that the time-stepper goes beyond the exact time for the next event, which is when

there is equality in criterion (22).

Figure 7a shows that the first fracture events require a pressure build-up followed

by a substantial pressure drop. This is a grid size effect. The injection point is
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a pre-fractured element and a large pressure is needed to fracture the neighbors

of this first element compared to the pressure needed to propagate a much larger

fracture. The initial fracture becomes 6 times larger in size when the nearest

neighbor elements break. This large expansion of the fracture creates the pressure

drop. The pressure drops become smaller and the well pressure becomes roughly

flat with small oscillations after the initial pressure transients caused by the grid

size effect. Figure 7 shows that the largest events have an energy release ∼ 0.1 MJ,

which corresponds to a moment magnitude little less than ∼ −6.5.

12. Inhomogeneous case

The second case is a demonstration of hydraulic fracturing in a heterogeneous

rock, where the heterogeneity is made by assigning random strength to the ele-

ments. The strength is initialized at the beginning of the simulation and it stays

fixed (quenched disorder). The following distribution, taken from [34, 33], is used

ǫfrac = ǭfrac
(r + 2)

(r + 1)
ψ1/(r+1) (24)

where ψ is a random variable uniformly distributed between 0 and 1, ǭfrac =

1/2·10−4 is the average element strength and the parameter r controls the width of

the distribution. The distribution becomes narrow for large r, because ǫfrac → ǭfrac

when r → ∞. A wide distribution is obtained with r close to −1, in which case

some bonds get a strength in the neighborhood of ǭfrac and other bonds become

very weak. The present case has r = −0.5 which gives strong heterogeneity.

Figure 8 shows the fracture pattern produced after 3 hours of fluid injection. The

strongly heterogeneous nature of the rock makes the fracture a disorded structure

as it propagates away from the well. The fracture is not characterized by planar

wings, but more by branched channels.

The well pressure, the number of broken elements in each event and the corre-

sponding energy released are plotted in figure 9. The inhomogeneous case shows

the same initial pressure transients as the homogeneous case, which is a grid size
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effect. Then follows a period with a slight increase in well pressure dominated by

several fracture events, where each event breaks a small number of elements. The

elastic energy released in the heterogeneous case is smaller than in the homoge-

neous case.

The current two cases are end-members in terms of heterogeneity. Nevertheless,

they have features in common, like an injection pressure that approaches a plateau,

with pressure drops at the fracture events.

13. Conclusion

A 3D finite element formulation of hydraulic fracturing is suggested. The model

partitions the stress into the initial stress and the additional stress caused by fluid

injection. The later (additional) rock stress is obtained as a solution of the Biot

equations of coupled fluid flow and deformations.

It is shown how a uniform representation of the rock and the fracture are made

for the pressure and the displacement equations. The elements of the fracture

are different from the elements of the rock by means of porosity, permeability,

source term and Young’s modulus. The fracture porosity is the volume fraction

of fractures in an element, the fracture permeability accounts for the aperture,

and the fracture elements have an almost zero Young’s modulus. The aperture is

obtained from the displacement field of the nodes at the fracture surface on the

regular grid. The computed aperture is validated by a comparison with the exact

ellipsoid-solution for a linear elastic 3D medium.

The current formulation deals with tensile (Mode I) fracture and the initial stress

state of the rock is therefore assumed isotropic. It should be straightforward to

consider non-isotropic stress states and shear failure as well, although this is not

yet tested. The maximum limit of the strain in each element is used as a fracture

criterion. It is shown numerically that the strain maximum scales as one over the

square-root of the element size. When an element breaks it changes status from

rock to fracture.
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A fracture event is followed by a pressure drop, because the fluid pressure re-

quired to keep a large fracture open is less than for a small fracture, when the

volume of fluid in the fracture is constant. Fracturing is assumed to take place

instantaneously and the volume of fluid in the fracture is the same right after an

event as it was right before.

The model is tested on two cases – a homogeneous rock and a heterogeneous rock.

The homogeneous case gives a fracture front that propagates away from the injec-

tion point symmetrically along three orthogonal planes. All events are in this case

at the front, and there are therefore no events in the interval between the front and

the well. The rock strength can easily be made heterogeneous because there is a

strength limit assigned to each element. The heterogeneous case gives a branched

fracture, where there are events that fill the distance between the injection point

and the farthest fracture tips. The well pressure, fracture surface and the elastic

energy released in each event are also computed. The well pressure has a gentle

pressure increase with small pressure drops, after a few initial pressure transients

related to the element size. The elastic energy released in the largest events is of

order 0.1 MJ, when the well pressure is of order 1 MPa. The homogeneous case

gives fewer and larger events than the heterogeneous case.

14. Appendix: The finite element formulation

A multiplication of the force balance (1) with the basis function NI associated

with node I , and integration over the volume V gives that

∫

V

∂σ
(1)
ij

∂xj
NIdV =

∫

V

(

∂τ
(1)
ij

∂xj
+ α

∂p(1)

∂xi

)

NIdV = 0 (25)

in terms of effective stress τ
(1)
ij . Upper case indices, like I and J , denote node

numbers and lower case indices i and j are spatial directions. (Einstein summation

convention is applied, which assumes summation over pairs of equal indices.)

The divergence theorem and partial integration of equation (25) give the Galerkin
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formulation

∫

V

τ
(1)
ij

∂NI

∂xj
dV −

∫

∂V

τ
(1)
ij njNI dS =

∫

V

α
∂p(1)

∂xi
NI dV (26)

The volume V has the surface ∂V with n as the outward pointing normal vector.

The surface integral of τ
(1)
ij is zero because τ

(1)
ij = 0 on the boundary. We im-

pose zero displacement onto the equation system for the eight corner nodes. The

Galerkin formulation with the displacements as the unknowns becomes simplified

by using the following standard notation [15, 23]. Stress and strain written as the

vectors

τ
(1) = (τ (1)xx , τ

(1)
yy , τ

(1)
xy , τ

(1)
xy , τ

(1)
yz , τ

(1)
xz ) (27)

and

ǫ = (ǫxx, ǫyy, ǫzz, 2ǫxy, 2ǫyz, 2ǫxz) (28)

allow for the compact notation











τ1j
∂NI

∂xj

τ2j
∂NI

∂xj

τ3j
∂NI

∂xj











= BT
I τ

(1) (29)

and

ǫ = BJuJ (30)

where derivatives of the basis function appear in the matrix

BT
I =











∂NI

∂x
0 0 ∂NI

∂y
0 ∂NI

∂z

0 ∂NI

∂y
0 ∂NI

∂x
∂NI

∂z
0

0 0 ∂NI

∂z
0 ∂NI

∂y
∂NI

∂x











(31)

The vector uJ = (uJx, uJy) is the displacement in the x- and y-direction at node

J . The Lamé-equation (10) becomes τ (1) = Dǫ when expressed with the stress-
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and strain vectors, where D is the matrix

D =





















(2G+ λ) λ λ 0 0 0

λ (2G+ λ) λ 0 0 0

λ λ (2G+ λ) 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G





















(32)

The Galerkin formulation (26) can now be re-expressed in terms of the displace-

ments as
∫

V

BT
I D BJuJ =

∫

V

α∇pNI dV (33)

The pressure gradient on the right-hand-side is the load that causes the displace-

ments.

The pressure pnJ is a solution of the following standard Galerkin formulation [15,

23]
(
∫

V

φcfNINJ dV +∆t

∫

V

k

µ
∇NI∇NJ dV

)

pnJ (34)

=

∫

V

CNINJ dV p
n−1
J +∆t

∫

V

QNI dV (35)

which is obtained from the pressure equations (17) by multiplication by the basis

function NI and the use of Greens theorem. The surface integral from Greens

theorem drops out because of Dirichlet boundary conditions. Time discretization

is backward Euler, where pn and pn−1 are the pressures at the present and previous

time step, respectively. The source term is

Q =

{

−α ∂ǫ/∂t (rock elements)

−∂φF/∂t (fracture element)
(36)

and the well element has in addition the injection rate Qin/VE . The equations for

pressure and strain are solved decoupled at each time step. The pressure equation

is solved first. The pressure at the current time step is then used in the right-hand-

side of the equation for the displacements, which gives the displacements at the
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current time-step. The possible instability caused by the source term (36), when

the pressure- and displacement equations are solved sequentially, is discussed in

section 6.
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Figure captions

Figure 1. The representation of the fracture by a regular finite element grid.

Figure 2. The fracture surface from constant fracture pressure.

Figure 3. The displacement field through the ellipsoid in figure 2.

Figure 4. The concentration of the stress in the element at the fracture tip. Only

a part of the fracture is shown and the displacement field is multiplied with a

suitable factor to enlarge the deformations. The fracture center is at x = 0. (a)

Strain ǫyy (b) Stress σyy.

Figure 5. The stress enhancement at the fracture tip with increased grid resolu-

tion. (a) Strain log(ǫyy) (b) Stress log(σyy).

Figure 6. The homogeneous case gives a symmetric fracture made by three or-

thogonal planes.

Figure 7. (a) Well pressure. (b) Number of broken elements. (c) Elastic energy

stored in the grid.

Figure 8. The inhomogeneous case gives a branched fracture without any pre-

ferred fracture planes.

Figure 9. (a) Well pressure. (b) Number of broken elements. (c) Elastic energy

stored in the grid.
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Figure: 2
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Figure: 6

34



(a)

(b)

(c)
time [hours] 

0 2 4 6 7 9 11 13 

w
el

l p
re

ss
ur

e 
[M

Pa
] 

0 

1 

2 

3 

4 

5 

time [hours] 
0 2 4 6 7 9 11 13 

fr
ac

tu
re

d 
el

em
en

ts
 [−

] 

0 

50 

100 

150 

200 

250 

time [hours] 
0 2 4 6 7 9 11 13 

el
as

tic
 e

ne
rg

y 
[M

J]
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure: 7

35



Figure: 8
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