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Abstract

A finite element based procedure is suggested for the modedfihydraulic frac-

turing of heterogeneous rocks on a macroscopic scale. Tharsxis based on
the Biot-equations for the rock, and a finite element reprtasiem for the fracture
pressure, where the fracture volume appears as fractucsipor The fracture
and the rock are represented unified on the same regulardieitgent grid. The
numerical solutions of pressure and displacement are egri#gainst exact 1D
results. The 1D model also shows how the tension forces thet the fracture
decreases as the gradient of the pore pressure decrease$iadtare criterion

is based on the “strength” of bonds in the finite element gtids shown how

this criterion scales with the grid size. It is assumed thettbiring happens in-
stantaneously and that the fluid volume in the fracture is#me after a fracture
event. The pressure drop that follows a fracture event ispced with a pro-

cedure that preserves the fluid volume in the fracture. Thigdufic fracturing

procedure is demonstrated on a homogeneous and an inhoetagermck when
fluid is injected at a constant rate by a well at the centre®tjiid. A case of a ho-
mogeneous rock shows that a symmetric fracture developsdtbe well, where
one bond breaks in each fracture event. A heterogeneousshase the inter-

mittent nature of the fracture process, where several bboredzk in each fracture
event.

Keywords: hydraulic fracturing, pressure-transients, intermitfgocess,
fracture criteria, fracture propagation, heterogenéitjte element method
(FEM), 2D

Email addressiMagnus. Wangen@ f e. no (Magnus Wangen)

Preprint submitted to Journal of Petroleum Science and Eeejiing March 13, 2011



1. Introduction

Hydraulic fracturing of rock is the process where the poespure build-up, for
instance by an injection well, becomes sulfficiently highréeture the rock (Jaeger
et al., 2007). It is commonly applied by the oil industry tdhance the permeabil-
ity of the near well region of reservoirs. Hydraulic fracty has become neces-
sary in production of shalegas, where one wants to fractumebxamum of shale
at a minimum of expenses (Cheng et al., 2007). Similar corstidas apply for
deep geothermal wells (Evans et al., 2005; Sanjuan et d6)20here “good”
communication between injection and production wells ipantant for energy
production. Another related field is safe and secure stocddeO, in aquifers
and reservoirs, where enhanced injectivity in the neat+#gglon can be achieved
by hydraulic fracturing. At the same time, it is importanatiCO, injection can
be carried out with a minimum risk for fracturing of the res®r seal, which may
cause leakage of GQRutqgvist and Tsang, 2002; Kvamme and Liu, 2009).

Hydraulic fracturing also occurs naturally as a fluid reeeasechanism during
pressure build-up in reservoirs over geological time (&iH4992; Wangen, 2001).
Other examples are melt segregation and eruption in the ¢raskson et al.,
2003), melt intrusion as sills and dykes (Turcotte and Moyd®92), mud vol-
canos and hydrothermal megaplumes (Judd and Hovland, 2007)

Much of the current knowledge of hydraulic fracturing at seoir scale comes
from the oil industry where it has been a technique to enhdre#low properties
of rocks with low permeability. The propagation of hydrattiactures can be ob-
served with passive seismic monitoring, and the seismintew@n be correlated
with the well head pressure and the injection rate (Weng €1@97; Sasaki, 1998;
Rector et al., 2000). The interpretation of the seismic esardy be complicated
by activation of slip along faults as the pore pressure eses and the effective
stress decreases (Sasaki, 1998). Seismic observationgtsdtdydraulic fractur-
ing is an intermittent process, but the actual texture ofrdgtures is very difficult
to observe at a reservoir scale. The complex nature of fludifidractures adds
to the complexity, because fractures have a rough surfattharflow inside them
are non-evenly distributed (Bernall995; Brown et al., 1998; Alava et al., 2006).

Although the importance of hydraulic fracturing, both irseevoir engineering
and as a natural process, it is still a very challenging mete model. Modelling
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fracture nucleation, propagation and interaction is emajing even without the
pore fluid as the cause for fracturing. The fractures areodisuities in the solid,
and they are normally complex structures, due to the hetewmus nature of
rocks. Such complex discontinuities are not easily reprteseby standard finite
difference or finite element grids (Alava et al., 2006).

Different types of models have been developed for hydrdrdicturing. The first
models applied by the oil industry were based on known (dicaly results for
fractures (Hubbert and Willis, 1957). These models havditgnof the frac-
ture walls by an internal fluid pressure and they were addasd ddf through the
fracture walls. Such semi-analytical models for hydratiacture were later in-
tegrated with numerical reservoir simulators (Settari;9)9 A development that
has continued until today, see Adachi et al. (2007) for aexgvi A particular
shortcoming of these models is that they do not easily haheldeterogeneities
that exist in rocks on all length scales. How heterogersed@ntrol fracture nu-
cleation, propagation and interaction have been studi¢iul siinple models like
the random fuse model and models made of springs and beaenslesamann
and Roux (1990) for a review. These models of deformation amctire have
later evolved into models of hydraulic fracture like the fmemodel (Tzschich-
holz et al., 1994; Tzschichholz and Herrmann, 1995; Tzéttalz and Wangen,
1998) and the spring model (Flekkgay et al., 2002). Distitetent code has been
developed to study fracturing and later extended with pord tb study hydraulic
fracturing (Al-Busaidi et al., 2005). Finally, finite elentanodels are developed,
which build on Biot’'s equations for poroelasticity, where fhactures are handled
by changes in the permeability field (see for example Tand. €1892); Wang
et al. (2009)).

This study deals with macroscopic hydraulic fracture okhegeneous rock at a
reservoir scale. The modeling is 2D and the spatial disa®tin is done with the
finite element method using square bilinear elements. Thehgis an element
size that is typicallylm x 1m both for the rock and the fracture. However, the
elements that represent the rock are treated differerdiy those of the fracture.
The rock is assumed to follow the Biot equations for porotedag. The elements
that contain the fracture are modelled with a pressure egquatere the fracture
volume is accounted for by the fracture porosity. The regmetion of both the
rock and the fracture by the same regular grid simplifies thraerical formula-
tion. It also makes fluid pressure in the fracture fully imeggd with the fluid flow
in the rock. An essential feature of the macroscopic mod#ias it represents



the pressure gradients that open the fracture. It is thesilgeso model macro-
scopic stress distribution around the fracture and fragiwopagation. Although
a coarse grid resolution is unable to capture the complexildedf fractures at a
micro-scale.

We apply a fracture criterion that utilizes the strain meadwy bonds defined
by the element sides. The fracture criterion is analogouwddbeam strength
of beam models (Tzschichholz et al., 1994; Tzschichholz ldedmann, 1995;
Tzschichholz and Wangen, 1998), spring strength of sprindets (Flekkay etal.,
2002), and it makes it easy to include randomness which alfowthe modeling
of heterogeneous rocks. A simple procedure is suggestedemdnstrated for
the calculation of the pressure drop that follows a fracawent.

The paper is organized as follows: The Biot equations areifirsiduced. Then

follows a presentation of the fracture criterion, the tinepping, the discretization
of the fracture, the fluid pressure in the fracture and thenpability of fractured

elements. The verification of the code is presented by meatid solutions and

fracture aperture. The grid size dependence of the fractitexion is discussed
before examples are shown. One case is a homogeneous rotheaoiter is a

heterogeneous rock.

2. The Biot equations for the rock

The fracture model is based on Biot’s equations for couplddrad&tions and
fluid flow in porous media (Biot, 1941; Wang, 2000). The equili;m equations

are
aO',L‘j

— — 00 1
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whereo;; is the stress tensor ang is the bulk density of the rock. The indices
andj run over the spatial directions= 1 andy = 2 in a 2D horizontal reservoir.
The right-hand-side is therefore zero since gravity acthévertical direction
(z = 3). Effective stress is related to strain by the Ll&aequations

0'2]- = Uij — ozp5ij = — (Aekkélj —+ 2G€ij> (2)
wherep is the fluid pressure andg; is the strain
1 8uz an
i = §<axj * ax) ®)
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and wherey; is the displacement in thedirection. (Einstein summation conven-
tion is applied which assumes summation over each pair adlegdices.) The
minus sign is introduced in the stress-strain relationr{2)rder to have compres-
sion corresponding to positive effective stress and tentionegative effective
stress. The Laiparameterd andG are given by the Young’s modulus and
the Poisson ratio as

vE E

A= TToasw) 2 9= @

The equilibrium equations (1), the Laequations (2) and the expression (3) for
strain make together the equations for the displacemedt fiel

0%y, 0%u; op
(A + G) arcor, G0, “on 0 ©®)

Boundary conditions for this equation are zero displacemernhal to the bound-
aries. The corresponding pressure equation is

dp k Oe
s v(—v ) = o 6
ot 1 b Yo ©)
whereS is the specific storage coefficient= €11 + €22 + €33 is the volume strain,

k is the permeability angs the viscosity. The pressure equation is solved with
zero pressure at boundaries. The initial pressure is takba zero and the initial
displacements are also zero.

We notice from the La@ equations (5) that non-zero displacements are the result
of pressure gradients. From the pressure equation (6) weénaeehanges in the
volume-strain act as a source term. In the applications Wilesidy hydraulic
fracturing from fluid injection at the centre of the grid. Fldlow from injection
then dominates over changing volume strain through timas then, for such
cases, possible to solve the equations for pressure anidabspent decoupled,
since the displacement field (volume strain) has negligffiect on the pressure.
The pressure equation (6) is solved first, and then the displant field with the
given pressure solution. The time-dependency in the disph@nt equation is
from the time-dependency of the pressure, and it is thezetoe pressure field
that controls the displacement field.

The appendix gives a summary of the finite element formatiohamé equa-
tion (5) and the pressure equation (6).
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3. Fracture criterion

The criterion that decides when the rock fails is an essegudid of any code for
fracture modelling. We have chosen a criterion based onttéegth of the bonds
defined by the element sides. These bonds become stretcleéziments under
tensile stress. The criterion is therefore restricted tsite (mode ) fractures.
The bonds are assigned a fracture threshold, which is themax strain before
breaking.

The fracture is produced by injecting fluid at the centre efdghid and letting the
fluid pressure increase. Once the fluid pressure has increasgciently for a

bond to become stretched beyond its threshold it breaks.c&hie element (or
the well) and the two opposite neighbour elements are thialioavity that prop-

agates as a fracture. The fracture surface becomes inddectever-stretched
bonds at the end of each time step.

The element that has a broken bond as a side becomes a pa# fsatture,

which means that this element changes properties from mlatture. A frac-

ture element becomes different from a rock element by haairegluced Young's
modulus and an increased permeability. A very low value faung’s modulus is
used as an alternative to removing the fractured elemeuts tine finite element
computation for the displacements.

We will look at hydraulic fracture of both homogeneous arftbimogeneous rock.
An homogeneous rock has bonds with the same strength thdestole an inho-
mogeneous rock has a random distribution of bond stren@the.random bond
strength may be either quenched or annealed. Quenchedelisoeans that the
disorder is “frozen” in the grid. Annealed disorder is whaa tandomness is al-
lowed to change with time. Our model has quenched disordes.bbnd strength
is initialized at the beginning of a computation using thioieing distribution
_(r+2) 1/(r41)

s = S—(r n 1>2/1 (7
taken from (Tzschichholz et al., 1994; Tzschichholz andridann, 1995). The
random variable) is uniformly distributed betweef and 1, s is the average
bond strength and the parametecontrols the width of the distribution. The
distribution becomes narrow for large becauses — s whenr — oco. A wide
distribution is obtained with close to—1, in which case some bonds get a strength
in the neighborhood of and other bonds become very weak. A homogeneous
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rock is simply made by assigning the same streagthall bonds, and the example
of a strongly heterogeneous rock (presented later) has-0.3.

4. Time stepping

The time step is set to a minimum value when a fracture eveapidras in order to
compute the following transients in the fluid pressure. Tmetstep is increased
by a constant factor if there are no fracture events. It is fhessible to do time
stepping through long periods with only pressure build-Tige factor is normally

in the range from.2 to 2, which allows the time step to be increased by a factor
1000 after~ 40 to ~ 10 steps, respectively. The minimum time step sin the
examples. There is also a maximum time step, and there i<nease in the time
step once the maximum step is reached.

5. Discretization of the fracture

We want to model the fracture using the same regular FEMagritie surrounding
rock. Mass conservation of fluid in the fracture is the stgripoint for making
such a FEM-formulation. Mass conservation requires thataie of injection at
the well is equal to the rate of mass accumulation in the dragplus the rate of
mass leakage though the fracture walls. This is written as

d .
7 de—l—/ 0fvp -ndA = My, (8)

whereV is the volume of the fracture a@d” is the fracture surface. The first term
in equation (8) is the rate of mass accumulation in the fractund the second is
the rate of leakage through its surface. The Darcy flyxis in the rock right
outside the fracture ana is the outward unit normal of the fracture surface. The
right-hand-side is the rate of mass injecti/tz'ffi]1 = 0Qin, WhereQ);, is the volume
rate of injection.

Equation (8) for mass conservation of fluid in the fracture ba approximated
by the elements in the grid. Figure 1 shows a linear fractocethe elements that
are traversed by it. The volume of these elementigsis The surface integral is
approximated by sum over the Darcy fluxes around the fradtalements. The
leakage from the fracture is dominated by flow normal to thieesi which in
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the FEM-grid are given by the fluxes in the neighbour eleménmthe fracture.
The mass of fluid in the fracture can be represented by a volategral over
the fractured elements by introducing fracture porositywhich is the volume
fraction of fracture in the element. The rate of mass accatiorl in the fracture
can then be written as

d

—_ Qde

e 0+dV 9
i /. G 07dVE 9)

and the finite element expression for mass conservatioreifréicture becomes

d :

— GeordV + / 0fvp -ndA = M, (20)
dt Jy, oV

The time-derivation goes through the integration sign bseahe volumé/y is

constant. Gauss theorem converts the surface integraldatume integral which

gives the following pressure equation for the fracturednelets

0 k —0¢./0t (outside injection element
5 p—v( vp>:{ ¢e/0t ( j )

Lot m Qi /h>  (for injection element) (11)

where@;,/h? is the injection rate per element volume. It is now assumet th
fluid flow in fracture is by Darcy’s law given by a fracture pexability k.. The
fracture permeability is discussed section 7. An esseptaderty of the fracture
permeability is that it sufficiently large to prevent largegsure drops inside the
fracture zone.

The computation of the fracture porosity is straightfordvéor each element in
the fracture zone. It is simply the volume fraction of voidrfr the fracture

A— A
= 12
be= 7 (12)
where A, and A are the areas of an undeformed and a deformed element, re-
spectively. The coordinates of the deformed element ar@mdd by adding the
deformations. The displacements of the nodes of the fradtelements therefore
give the fracture width.

The time-derivative of the fracture porosity is obtainedrwmerical derivation
and it is computed from the two last time steps. This works iinthe numeri-
cal scheme because it does not change much from time stapecstep during
pressure build-up.



The pressure equations (6) and (11), for the rock elementgtanfracture el-
ements, respectively, are of the same form and covers theareijnite element
grid. The numerical formulation for the pressure in thetinae is therefore unified
with the fluid flow in the rock.

Equation (8) for mass conservation in the fracture showségones with respect
to the injection rate. The first regime is case of an impernag@io low permeable)
rock where the leakage through the fracture walls are musshthean the injection
rate. The time-rate of increasing fracture volume can tleeagproximated as

av

— X in 13

-~ Q (13)
assuming that the pore fluid is incompressible. The otheémegs when all the
injected fluid leaks through the fracture walls

/ vp - ndA = Qi (14)
ov

This case represents the stationary state where the feagiiurme is constant.

6. Fluid pressure in the fracture

The breaking of a bond leads to a pressure drop in the fracluiebecause the
fracture becomes longer, while the fluid volume in the freetdioes not change.
The aperture therefore decreases, and less pressure iedetumaintain a re-
duced fracture opening. We assume that the fluid pressudeitise fracture is
nearly the same everywhere, and that the pressure dropfapEtantaneously.
The pressure drop will therefore only affect the nodes offtheture, (which are
along its surface).

The pressure drop is computed with separate procedure. dime of the frac-
ture is known before a bond is broken. The fracture pressasédbe reduced for
the fracture volume to remain the same after a fracture evéris is done with a
Newton scheme. A function that computes the fracture voltnova knowledge
of the fracture pressure is used. A fracture pressure igreesithe fracture nodes,
and the corresponding displacements and fracture voluetan computed. The
Newton step uses numerically computed derivatives, andecgance is rapid be-
cause changes in fracture volume and fracture pressurearly finearly related.
Only two Newton iterations are needed to obtain a presseremnent that is less
than 1 Pa.



7. The permeability of fractured elements

The fractured elements are assigned a constant permgabilich represents the
increased average permeability caused by the fractusepdissible, by comparing
the fracture width with a minimum width, to check when therage element
permeability is dominated by the fracture. A fractured edatmbecomes more
permeable in the direction of the fracture. It is straightfard to estimate this
permeability when we assume that it is cut by a parallel plateture aligned
with the element sides. The average permeability in thectiine of the fracture
is then

w w 1
av — 1__>r <_) n = —w? 1

v = Sk + (5 )k and by = (15)

wherek, is the rock permeability;; is the fracture permeability, is the element

size andw is the fracture aperture. The condition for the fracturedmuohate the

average permeability is simply
WS> Win = (12k,h)'3 (16)

when the element size is much larger than the fracture aperfun element with
a size and permeability as large/as- 10 m andk, = 1 - 10712 m?, respectively,
becomes dominated by a fracture with an aperture as law:asu,,;, = 0.5 mm.
The average permeability of elements with smaller sizewefaock permeability
becomes dominated by fractures with smaller aperturesaé@ge permeability
normal to the fracture becomes negligibly increased.

Flekkay et al. (2002) applied an anisotropic parallelglpérmeability for the
fracture zone in a 2D model. Such an approach models the gshgiscurately
on a short length scale when the fracture zone appears atepatates. On

the length scale of several meters it appears that tensamtufies are complex
zones of branches and micro-fractures (Davis and Reynd®®§)1 The fracture
surface is not plane either, instead they are rough. It apgbat a wide range
of brittle material has statistically the same roughnesaléiy et al., 2003, 2006).
The roughness leads an uneven flow in the fractures, whichasacterized by
channels (Brown et al., 1998).

The numerical case studies in 2D have fractures where thragaduility, equa-
tion (15), is much larger than the permeability of the rockeTpermeability of
the fracture can in some 2D cases become more than 10 ordeegoftude larger
than for the rock, for instande. ~ 10~'®* m* andk; ~ 10~® m?. A very large dif-

ference in permeability between the rock and the fracturg Ineachallenging for
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iterative linear equation solvers. A limit on the fractuermeability has therefore
been applied to make the numerical solution well behavee. sprecific value of
the fracture permeability is less important as long as drge enough for pressure
to be nearly constant in the fracture.

8. Verification of the numerical solution

The Lane equations (5) for the displacement are considerable gietpin 1D.
Assuming that displacementis in thex-direction gives that

0*u 1 Op

922~ (2G + \) Oz

(17)

in the time-dependent case. The Biot coefficient is for siaiglitaken to be
«a = 1. Integration of equation (17) two times leads to the disphaent

u(t,z) = ﬁ ( /0 "ot 2!y — p0x> (18)

when boundary conditions ate= 0 atz = 0 anddu/dx = 0 atz = [. The latter
boundary condition follows from zero effective stres$, (= 0) at the fracture
wall at x = [. The effective stress is zero because the pressgiirs gqual to
the stressd,.) in the walls of the fractures. Zero effective stress= —(2G +
M) du/dx = 0 gives thatdu/dx = 0. The pressure at the boundary= [ has the
constant value,.

Pressure rises instantaneously in the fracture from zespdbtimet = 0, and the
pressure equation has therefore zero pressure as initidltmmn. The boundary
conditions arey = 0 atz = 0 andp = py atz = [, respectively. This equation is
made dimensionless by introducing the scaled variablesp/p,, & = x/I, and

t = t/t,, where the characteristic time is

_ Sul?
ok

The timet, is the time scale needed for the pressure to reach steady Jiae¢
pressure equation is then dimensionless

to

(19)

op 8213
2% a2 0 (20)
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assuming that the terik /0t is negligible. The initial condition i = 0 and the
boundary conditions ang= 0 for z = 0 andp = 1 for z = 1. The solution of the
dimensionless pressure equation is by separation of Vasiab

pt, &) =&+ Z an sin(A\, ) exp(—A2t) (21)
n=1
where o (1)
a, = <; ) and )\, = nm (22)

The pressure with units follows from the definition of the dmsionless variables
and itis

p(t, ) = pop(t/to, x/1) (23)
We notice that the Fourier series decay to zero with time &atthe pressure
approaches the stationary pressure- poz/l. The first term in the series has the
slowest decay towards zero and the largest Fourier coeffidtecan therefore be
used to estimate the half life of the pressure decay, whicbrbes

. log?2
fijp ™ —2Z 2007 OF )~ 0.07t (24)
m

The time scale for the pressure decay is controlled by theactexistic timet,
and the pressure will be far away from a stationary stateifiog spans that are
less thart, ;. This is also important with respect to how fast the presbuile-up
approaches the boundary. Pressure build-up from fluidtiojg@nd changes in
the displacement field will not reach the boundaries for tintervals less than
t1/2. In the following we will assume that the compressibilitytbé fluid is more
important than the compressibility of the porous matrixe Bipecific storage can
then be approximated as

S = ¢Cfgf (25)
where¢ is the rock porosityc; is the fluid compressibility and; is the fluid
density.

Figure 2 shows the pressure solution (23) after a constassprep, = 10 MPa

is applied at the left boundary. The grid sizeli®m x 100m and the resolution
is 20 x 20 nodes. The length of the rock from the fracture to the boundar

[ = 47.4 m, the permeability i% = 1 - 10~'>* m?, the porosity isp = 0.2, the fluid
viscosity is; = 1-107% Pass, the compressibility is = 1-10~% Pa! and the den-
sity iso; = 1-10° kgm~3. The pressure along the profile is plotted first for time
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t = 0.2 days and then for the time ste@$, 1.4, 3, 6.2, 12.6, 25.4 and50.8 days.
We see that there is no pressure build-up close to the boyolat < 2 days,
which is consistent with the time scale in this case, whicfy is 231.5 days and
ti2 = 16 days. At the nearly steady state £ 50.8 days) the pressure is in-
creasing linearly from the hydrostatic (left) boundaryhe tracture wall (right).
Figure 2 shows also the nodal-values of the numerical pressalution, which
are in accordance with the exact solution.

Figure 3 shows the displacement field through the rock asréspre is increas-
ing with time. The absolute value of the displacement at thetire wall ¢ = 1)
begins at the maximum value

Pol
=—— 26
|u|max (2G _|_ )\) ( )
att = 0+, which is immediately after the pressure has been applied.absolute
value then decreases as the pressure moves into the rodk paeomes reduced

to the half .

5 lu

. 27
i = 5 @n

max

as the pressure approaches steady state. This is also saemthf expression
for the displacement (18), where the integral over the piresisicreases from 1

to pol/2 as the pressure increases from the initial value 0 to the stationary
valuep(z) = pox/l. The numerical solution for the node displacements is also
shown in Figure 3, and the agreement is good although the meathsolution is
coarse (only 10 nodes through the rock). The elastic pammet = 50 GPa
andv = 0.25 (G = 20 GPa and\ = 20 GPa) gives thafu| , = 7.89 mm and

lul .., = 3.9 mm forp, = 10 MPa as seen from Figure 3. Figure 4 shows the
displacement at the fracture wall as a function of time, aadgient behaviour is
the same as for the pressure.

The effective stress through the rock becomes

(t,2) = ~(20 + N7 = py —p(t, ) (28)

and the stress is therefosét, z) = o’ + p(t,x) = po. The energy stored in the
1D rock with a unit cross sectiad, = 1 m? is

1 : Po : ’ /
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and it is plotted in Figure 5. The transient behaviour of thergy is also dictated
by the transient pressure. Using the same numbers as abdhe expression

for the energy gives that it is initially¥’ (0+) = 39.5 kJ, and that the energy
decreases to the half as the pressure approaches steadyFagatre 5 shows the
numerically computed energy at the same time steps as feréssure. Itis in

good agreement with the analytical expression for the gn@9).

The displacement can be expressed in dimensionless form as

R A U
o= = N </0 p(z")dz a:) (30)
where D
N=—2"_ 1
(2G + \) (31)

is the only explicit parameter in this 1D model for coupleddipressure and
stress/strain in the porous rock. It should be noted thatEheesults were com-
puted with the 2D code, the same code as in the 2D simulatiem®dstrated in
the next sections.

The 1D solutions for pressure and displacement apply fonanite long frac-
ture. These solutions are therefore not suited to test timpatation of the width
(aperture) of a fracture with finite length. The fracture thics given by the node
displacements of the fractured elememigjure 1 shows the nodes at the surface of
a linear fracture in the-direction. The computed displacement in fhdirection

of these nodes gives the shape and width (aperture) of tbieifeaThe numerical
solution was tested by computing the width of a predefineellirfracture with

a constant fluid pressure. The numerically computed nog#adisments of the
fracture elements are then compared with the analyticatisol for displacement

2

(o) = £ 20 2y (32
which applies for a 2D plain-strain fracture in an infiniteng&in, when it is
loaded with a constant fluid pressupg (Sneddon and Elliott, 1946; Helland,
1984). The fracture extends a distancalong the x-axis on both sides of the
origin. Solution (32) gives an elliptical fracture shapdhwa maximum width
wmax = 4(1 — v?) ppa®/E at the center. A numerical test on a 2D square grid,
where the fracture lengthu is 20% of the grid size (length of one grid side), gives
an elliptic fracture with a width that is 85% of the width fraime analytical so-
lution (32). A plot of the y-displacements of the nodes along the fracture surface
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as a function of the:-coordinate gives the fracture shape. Figure 1 shows these
nodes along the fracture. The fracture width is the diffeecim displacement at
the opposite sides of the fracture, which is the differenggdisplacement of the
nodes of the broken bonds shown in figure Recall that the numerical solution
has zero displacement normal to the external grid bourglaarel that the analyt-
ical solution (32) applies for an infinite domain. The congalifracture aperture
approaches the analytical solution (32) as the grid sizee@ses relative to the
fracture length.

9. Grid size dependence

The fracture criterion is based on the strain of the bondsdtément sides) which
makes the breaking threshold dependent on the grid sizes i$abserved for
the bonds at the two tips of a straight crack. These are the stietch bonds
for a homogeneous rock. In order to investigate the grid deggendence we
computed the average strain at the tips of a straight fradtr different grid
resolutions. All other conditions were kept constant, li&einstance the same
stationary fluid pressure. The strain at the crack tip istptbas a function of
resolution in Figure 6, where the resolution is measuredhbybiock sizeh =
[/N, and whereN is the number of nodes in one spatial direction. The total
number of grid nodes in 2D i% x N nodes. The Figure 6 shows that the strain
scales as/N when the system sizeis kept constant. We therefore observe that
the strain at the tips of a straight crack increases as tiergsblution increases.
This observation can be shown by using the/r singularity of the stress at a
crack tip. The average stress over the element at the featifurcan then be
estimated as

R T onrdedr 420

o, = =
fh/2 Jo rdodr 3vh

0

(33)

when the stress in the radial direction is approximated,as= C'/\/r. Figure 7
shows an element at a crack tip. We have that strain is priopaitto stress,
which implies that the strain in the fracture tip elemeniassas

1
ewﬁwx/ﬁ (34)

This is precisely the behaviour seen in Figure 6. The remmutependence of the
bond-strain implies that the fracture thresholds, whi@assigned to the bonds,
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must be scaled accordingly. Therefore, these thresholdstozbe scaled with a
factor+/f if the number of nodes is increased by a facfolt is also possible to
estimate the strain at the fracture tips in terms of stresgyubato, ~ EAh/h,
which gives that

Ah 42 C

h 3 EVh

is the strain corresponding to the parameterThis parameter can be related to
fracture toughness for homogeneous rocks since it is ptiopat to the stress
intensity factor.

(35)

This criterion handles tensile (mode I) fracturing but nloéa (mode 1) frac-
turing. Shear fracture could also be dealt with by introdga threshold for the
deformation angle between two bonds that are initiallytrigghgled, since the grid
has initially square elements.

10. Hydraulic fracture of homogeneous rock

Numerical experiments are first carried out on a homogenemtls where all
bonds have the same strength in terms of maximum alloweit skluid pressure
is created by injection of water at a constant @te- 5-10~* m® s~! at the centre
of a 2D grid. It has the sizé00m x 100m with 40 x 40 nodes. The pressure
build-up from the chosen rate is first studied in case of nctfirgng, and Figure 8
shows the results. The well pressure reaches nearly 2.5 K€al8.5 min of
injection, and a little more than 4 MPa after 167 min. The pues is then starting
to rise at the boundaries too. Figure 8 also shows Theisignl({Theis, 1935;
Wangen, 2010) given by

QL (e
Pt = o s ( it ) T (36)

which gives the pressure at the timhand at a radial distaneefrom an injection
well in an infinite 2D aquifer. Theis solution is a useful meanestimate the
pressure build-up at a given radius and time. The aquifemeability isk, =
5-107* m?, the porosityp = 0.2, the fluid compressibility is; = 1- 1075 Pa’!

and the initial pressure i, = 0 MPa. The pressure, equation (36), can also be
written as

p(rt) = pEs (%) (37)
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where 0 5 )
P Crpr
= and ¢, = 38
4rk, dz 4k, t (38)
are a characteristic pressure and the characteristic tméhé radius-, respec-
tively. We see that the pressure at radiand at time',. is p, = p. E1(1) =~ 0.2 p...
The data for this case and a radius= 50 m gives thatt, = 417 min and

pr = 0.2 MPa.

Pe

Figure 9a shows the well pressure in case of hydraulic frexgwduring a time
span 00000 s (13.8 h). We notice that the initial pressure rise has an expoalenti
form before the first fracture event, which happens afté00 s 4.2 h). The
pressure would have approached steady state if the rockdiddactured. The
well pressure then drops with more than 1 MPa, before itstartise once more.
The first event is followed by a train of fracture events, vihas a well pressure
between 2 MPa and 3.5 MPa. Figure 9b shows that one bond igibiokeach
of the events, which is as expected for a homogeneous rocievalidoonds have
the same strength. The pressure needs to rebuild before draetwre event
can happen, and Figure 10 shows in detail how the pressuiddebetween the
events.

The fluid flow in the rock surrounding the fracture is shown igufe 11 when
steady state is reached. The well pressure has then reaé¢hgiiPa and it is in-
sufficient for new bonds to become overstretched and breglird=11 shows how
the fluid that is injected into the fracture leaks into thekrat steady state. The
computed displacements are multiplied by a suitable faotorder to visualize
the opening of the fracture. At steady state the injectitéa imequal to the leak-
age through the fracture walls, and also equal to the leatkmgagh the external
boundaries.

It is the effective stress that is the cause for rock strailgufé 12 shows the
concentration of effective stress at the fracture tipsesidy state, which is for the
same state as for the fluid flow Figure 11. The stress condrmtia symmetric

around the fracture, which therefore develops symmelyieabund the injection

well.

The well pressure and the fracture events for the same case, lower rock
permeability is shown in Figure 13. The permeabilitykjis= 1 - 107> m? (a

factor 50 less), and the time span for the same number of bonds to berbisk
therefore reduced by the same factor. A lower permeabitiylies that the well
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pressure increases more rapidly, and almost linearlyh@isame injection rate.
The fracture events are therefore more evenly distributed.

The intermittent behaviour of this model makes it differ&oin the two classi-

cal models of hydraulic fracturing, the KDG-model (Khrastovic and Zheltov,

1955; Geertsma and de Klerk, 1969) and the PKN-model (Pedad Kern, 1961;
Nordgren, 1972). Both these models assume elliptical frasftand the KGD-
model is similar to the proposed numerical model by assupiaig-strain in the

xy-plane. The fracture length is proportional#d’* andt'/* for the KDG- and

PKN-models, respectively, in case of permeable rock ank thigd loss (Piggott

and Elsworth, 1996). The fracture length is proportionaf’td and¢*/°, respec-

tively, in the other regime of impermeable rock and no fluidslgPiggott and
Elsworth, 1996). The number of broken bonds is a measurehéoteingth of a

linear fracture and Figure 9b shows an example of how theuradength grows
as a function of time for a permeable rock. A difference bemnvéhis model

and the KDG- and PKN-models is that some time passes befengréssure has
increased sufficiently to break the first bond and start thet@ire propagation.
Figure 11 shows the linear fracture at steady state, whele#keoff through the

sides is equal to the injection rate. Another differencéha the fracture stops
growing when the steady-state pressure is not sufficientgakoanother bond.

11. Hydraulic fracture of heterogeneous rock

A heterogeneous rock is modelled by assigning random gtrénghe bonds in
the finite element grid. The grid i$)0m x 100m with 120 x 120 nodes. The bonds
are made heterogeneous by setting —0.3 in the distribution given by (7). The
bonds can then be divided into two groups with respect toxgthe— one where

it is close to the average bond strengtand another where the strength is much
weaker thars. The rock permeability i&, = 1-10~" m? and the injection rate is
Q =2.78-10~* m*s~L. The time constant, equation (38), for Darcy flow towards
the boundaries rock becomes= 4 years. The low rock permeability compared
to the two previous cases gives less fluid leakage througfrdbture walls, and

it makes the time scale of the fracture process much smaller.

Figure 14a shows the well pressure as function of time. Weeathtat the fracture
events are non-evenly distributed and that several boredsraken in each frac-
ture event. A fracture event leads to a broken bond and thet foe@ recomputa-
tion of the fracture pressure. The reduced well pressuré¢randew state of stress
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may by sufficient for new bonds along the fracture surfacee@\erstretched.
The recomputation of well pressure and the breaking of thet meerstretched
bond continues until there are no more bonds to break. Tleéuh@propagates
by avalanches of broken fractures as can be seen from Figienhich shows
number of broken bonds in each event. This is in contrasta@dse of an homo-
geneous rock having bonds of equal strength, where one li@niihae is broken.
The well injection and fracturing are stopped at tidi® s, before the fracture
gets close to the boundaries.

Figure 15 shows the fracture and the surrounding effectress. The stress con-
centration at fracture tips are clearly seen and also theppession of the rock

along the fracture sides. Negative stress is tension arnitiveostress is compres-
sion. The heterogeneous strength distribution of the btewatis to the irregular

fracture surface and the beginning of branching of the fract

12. Conclusion

A finite element procedure is presented for hydraulic fracty It is based on the
Biot equations for coupled fluid flow and deformations in thekroand a finite
element formulation for the fluid pressure in the fracturdie Tracture volume
enters the pressure equation for the fracture by means dfdbeire porosity.
The formulation allows for a unified representation of bdté fracture and rock
on the same regular finite element grid.

Fracturing of the rock is based on the strength of the borldsn@nt sides) con-
necting the nodes. The reservoir is gridded with square extésnwith a typical
sizelm x 1m. The elements change properties from rock to fracture adsare
stretched beyond their strength threshold and break. Auirad element gets an
increased permeability and a (almost) zero Young’s modullee coarse repre-
sentation of the fractures is sufficient to model the fluid flokhe fracture zone,
the associated pressure gradients that open the fractdrinarstress concentra-
tion at the fracture tips. The grid size captures the maogmsgropagation of
fractures which are much larger than the element size.

It is assumed that a fracture event happens instantanemodlthat the fluid vol-
ume in the fracture remains the same after an event of borakibge The pres-
sure drop in the fracture that follows the breaking of a badamputed with a
procedure that preserves the fluid volume in the fracture.
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The finite element formulation of the Biot equations for cadpDarcy flow and
deformations are compared with exact solutions for theiapease of 1D. These
solutions show how the displacement from a fluid pressurdéiexpm the frac-
ture decreases with increasing leakage through the feawtalls, as the pressure
gradient decreases.

It is shown that the bond-strain scales\&d whereN is the number of nodes in
one lateral direction. This scaling is shown to follow fronet //r singularity
at the fracture tips. The bond strength must therefore dede&cordingly when
the grid resolution is changed.

Two computational examples of hydraulic fracturing arevamowvhere both have
fluid injected at a constant rate at the centre of the grid:fone reservoir of ho-
mogeneous rock and another of heterogeneous rock. Theuprdzsld-up from
the injection well is validated against Theis’ solution.eltase of homogeneous
rock gives a straight fracture that propagates symmelyieabund the well. The
fracturing of homogeneous rock is by a train of fracture ¢évevhere one bond
breaks in each event. A period of pressure build-up is necgsdter a bond has
broken before the pressure is sufficiently large for a newdlionbecome over-
stretched and break.

The example of a heterogeneous reservoir shows that hydifaatturing be-
comes an intermittent process in terms of broken bonds.eldrerrandom lengths
of the periods of pressure build up between the fracturetev@®uring the subse-
guent pressure drop several new bonds may be sufficiently arehbreak.
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14. Appendix: The finite element formulation

A multiplication of the force balance (1) with the basis ftion /N; associated
with node/, and integration over the volumeé gives that

3 o'
/W%MWZ/(%HW%>MW:0 (39)

in terms of effective stress;;. Upper case indices, liké and J, denote node
numbers and lower case indicesnd; are spatial directions. (Einstein summation
convention is applied, which assumes summation of pairgjoélkindices.) A
use of the divergence theorem and partial integration ohggu (39) give the

Galerkin formulation
N
/diiwz/a%Nm/ (40)
1% 1% a

K 8[Ej €T;

The integral of effective stress over the boundary is leftbmcause of Dirichlet
boundary conditions. We impose zero displacement for thmthary nodes onto
the equation system. The Galerkin formulation with the ldispments as the un-
knowns becomes simplified by using the following standarétian (Huyakorn
and Pinder, 1983; Langtangen, 1999). Stress and straitewds the vectors

!/

a_:(o_/ / /

vy Oy me) and € = (€,q, €y, 2€4y) (41)

allow for the compact notation

/ BNI

015 0a; T
j =B 42
. oNy 10 (42)
27 89@
and
€ = BJLIJ (43)

where derivatives of the basis function appears in the matri

ONy
ox 0
B, = ONg 44
I 0 By (44)
ON;  ONp
oy ox
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The vectoru; = (u,,, uyy) is the displacement in the- andy-direction at node
J. The Langé-equations (2) becomes= De when expressed with the stress- and
strain vectors, wherB is the matrix

(2G + \) 0 0
D= 0 (2G+X) 0 (45)
0 0 G

The Galerkin formulation (40) can now be re-expressed ims$esf the displace-
ments as
/B?DBJUJ:/OCVPN]CZV (46)
14 \%4
The pressure gradient on the right-hand-side is the loacctheses the displace-
ments.

The pressure’; is a solution of the following standard Galerkin formulatio
(Huyakorn and Pinder, 1983; Langtangen, 1999)

k
( / CN;N;dV + At / VNIV dV) o (47)
\% \%

= / CNIN;dVpy ' + At / QN;dV (48)
1% 1%

which is obtained from the pressure equations (6) and (1Xhbliplication by

the basis functionV; and the use of Greens theorem. The surface integral from
Greens theorem drops out because of Dirichlet boundaryittomsl Time dis-
cretization is backward Euler, whepé andp™~! are the pressures at the present
and previous time step, respectively. The coefficiéns

o= { ¢cy  (rock elements) (49)

¢ccy  (fracture elements)

and the source term is

—ade/0t (rock elements)
Q=< —0¢./0t (fracture elements, but not well) (50)
Qw/h*  (well element)

The equations for pressure and strain are solved decoupéadiatime step. The
pressure equation is solved first. The pressure at the duinea step is then
used in the right-hand-side of the equation for the dispressgs, which gives the
displacements at the current time-step. The time-devivatithe fracture porosity
and the volume strain in the rock are from the previous tirap.st
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15. Captions

Figure 1. The fracture has a volumi, and the elements crossed by the fracture
have a total volumé’z. The illustration exaggerates the fracture aperture. The
dashed lines show broken bonds.

Figure 2. The 1D solution (23) for fluid pressure is plotted as a funttdtime.
The fluid pressure is initially zero, and it becomgs= 10 MPa at timet = 0.
During time it approaches the linear steady state pressure.

Figure 3. The 1Dz-displacement from equation (18) is plotted for the fluidspre
sure in Figure 2. The absolute value of the displacements-at become reduced
to the half as the fluid pressure approaches the stationate st

Figure 4. The absolute value of the displacement at the fracture walt (& [)
is plotted as a function of time. The displacement is giverthiypressure in
Figure 2.

Figure 5. The elastic energy per unit cross section stored in the rddergth
x = [ as a function of time for the fluid pressure in Figure 2.

Figure 6. The strain of the bonds of at the tips of straight fracture dsrection
of the grid resolution. The resolution is measured in terinswnber of nodes/
in one spatial direction.

Figure 7. (a) A straight fracture is represented by the open (whitejnelets. A
possible outline of a fracture is also shown. (b) The averggithe stress is over
a half-circle in the element at the fracture tip.

Figure 8. The pressure build-up in the well in case fracturing does ake {place.

Figure 9. (a) The well pressure in the hydraulic fracturing of a homagmuns
rock. The fluid pressure in case of no fracturing is shown irurég8. The drops
in fluid pressure are caused by fracture events. (b) Only aredbs broken in
each fracture event.
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Figure 10. The pressure increase between fracture events.

Figure 11. The straight fracture when the fluid pressure has reachedlgtstate.
It is seen that the fluid flow acts to open the fracture.

Figure 12. The effective stress for the fracture under stationary fflad, which
is shown in Figure 11. (&, (b) o,,. The figures (a) and (b) show the fractured
elements and the broken bonds.

Figure 13. (a) The well pressure in the hydraulic fracturing of a homagmuns

rock but less permeable rock than in Figure 9. The black bsilfeark the time
steps. The drops in fluid pressure are caused by fracturetevém The number
of bonds that are broken in each fracture event.

Figure 14. (a) The well pressure in case of hydraulic fracturing of a hage-
neous and low permeable rock. The black bullets mark the sieygs. (b) The
jumps in the number of broken bonds show the fracture events.

Figure 15. The effective stress for the fracture at the end of the sitimnahown
in Figure 14. (a)o7,. (b) o,,. The figures (a) and (b) show the fractured elements
and the broken bonds.
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16. Figures
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(b) effective stress yy
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y—coordinate [m]

(a) effective stress xx (b) effective stress yy
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