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1Portland State University, Department of Mechanical and Materials Engineering, Portland, OR 97202, USA
2IFE, Department of Process and Fluid Flow Technology, 2007 Kjeller, Norway
3University of Oslo, Department of Mathematics, Blindern 0316 Oslo, Norway

(Dated: May 15, 2017)

A reduced order model of a channel flow is composed from direct numerical simulation data
obtained from the turbulence database hosted at Johns Hopkins University. Snapshot proper or-
thogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order
model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The
reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients
through their respective time derivative with a least-squares polynomial fit of terms up to cubic or-
der. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in
the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of
basis modes demonstrating that non-linear mode interactions do not lead to a monotonic decrease
in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence
kinetic energy but captures only the largest features of the turbulence in the channel flow and is
not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable
to accurately reproduce Reynolds stresses and root-mean-square error of the predicted stresses is
as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds
intermediate scales to the dynamical system. Difference between the time derivatives of the mode
coefficients and their least-squares fit is amplified in the numerical integration leading to unstable
long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the
integration time to the range of the sampled data and offering the dynamical system new initial
conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of
the integration time toward a known point along the original trajectories identified through a least-
squares projection. Under the recalibration scheme, the integration time of the dynamical system
can be extended to arbitrarily large values provided that modified initial conditions are offered to
the system. The low-order dynamical system composed with 28 modes employing periodic recalibra-
tion reconstructs the spatially averaged Reynolds stresses with similar accuracy as the POD-based
turbulence description. Data-driven reduced order models like the one undertaken here are widely
implemented for control applications, derive all necessary parameters directly from the input, and
compute predictions of system dynamics efficiently. Speed, flexibility, and portability of the reduced
order model come at the cost of strict data requirements; the model identification requires simulta-
neous realizations of mode coefficients and their time derivatives, which may be difficult to achieve
in many investigations.
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I. INTRODUCTION

Reduced order modeling describes a wide range of approaches that approximate complex system dynamics
of large or infinite degrees of freedom with a limited number of degrees of freedom. For applications in turbu-
lence, the goal is typically to simplify the Navier-Stokes (NS) equations, by isolating the important dynamics
for a given flow with an effective use of computational resources. Of these approaches, modal decomposition
methods are frequently selected as they add definition and organization to the vector space of the input in-
formation and offer intuitive means of filtering or truncation. The proper orthogonal decomposition (POD)
is a widely-used method as it represents the optimal organization of turbulence structures based on energy
[1]. Careful selection of the point of truncation of the mode basis retains the greatest range of dynamics
in the system with the least number of modes [2]. For turbulent flow data of high spatial resolution, the
classical POD presented by Lumley [3] is not as computationally efficient as the method of snapshots as per
Sirovich [4].

An attractive extension of the POD for dynamical system modeling, the Galerkin projection, is widely
used to reconcile the modal basis with a governing behavior law, resulting in a minimal set of ordinary
differential equations [5]. The Galerkin-POD procedure was first used in turbulent shear flow modeling by
Aubry et al. [6], and has since been extended to many flow scenarios; e.g. mixing layers and wakes [7, 8],
compressible flows [9], and bluff body wakes and aerodynamics [10, 11]. However, the ability of the POD
to represent the dynamics of a system is quite sensitive to transient behavior; deviations of the system from
the reference frame of the POD quickly result in divergence of the low-order dynamical system (LODS)
[12–15]. Galerkin-POD models offer great potential in computations of complex dynamics given that closure
assumptions can be provided. Recent work in Galerkin-POD reduced order models focus on accounting for
additional turbulence terms, such as eddy viscosities [10, 16, 17] and diffusion models to keep the system
stable. Adding extra terms to reduced order models increases stability for long integration periods, mostly
due to dissipation, and balancing the dynamics included in the coherent POD modes [10].

Unstable reduced order models derived from the Galerkin-POD method have been combined with correc-
tion factors in order to keep the dynamics within the bounds of the original system. Such corrections can be
quite effective at introducing stability, but risk suppressing complexity of the system [8]. Stability may also
be introduced by treatment of the pressure term as pointed out by Noack et al. [14] and Rempfer [2] and is
especially important in compressible flow applications such as acoustic fields and transonic flows [18]. Flows
in which the fluctuating pressure does not have a large effect typically do not gain much from the inclusion
of pressure in the Galerkin system. Another constraint in the Galerkin projection is that a large database is
necessary to compute the inner products and spatial gradients of constituent modes to sufficient statistical
convergence. Consequently, LODS are most effectively derived from numerical simulation data or require
strong closure assumptions, particularly in an experimental framework [7, 19]. A comprehensive history of
closure problems for dynamical modeling of turbulence is provided in Brunton and Noack [20]

The amount of data required to define a reduced order model is often a difficult constraint to overcome, and
may defeat the purpose of seeking the low-dimensional system. An analogous approach to the Galerkin-POD
method was presented in Perret et al. [21] wherein the dynamic mode coefficients, rather than the spatially
coherent modes, are used directly in the formation of the dynamical system. In this approach, simultaneous
realizations of the coefficients and their respective time derivatives are required to resolve the evolution of
the system. The derivatives of the coefficients are combined through a least-squares polynomial fit including
constant, linear, quadratic, and cubic parameters. Linear and quadratic parameters are analogous to those
produced through the Galerkin-POD method accounting for mode interaction in the viscous and convective
terms of the Navier-Stokes equations. Constant and cubic parameters added to the LODS through the
least-squares polynomial fit do not issue from projection of the behavior law, but can add stability to the
resulting dynamical system [7].

While data-driven (empirical, black-box) dynamical models are not as common for applications in tur-
bulence as the Galerkin-POD or other methods built on the Navier-Stokes equations, they offer promising
possibilities for flow control and prediction applications. Even though models like the polynomial fit method
do not explicitly require knowledge of the underlying physics, they offers several advantages in terms of ease
of definition of dynamics, speed of calculation, and portability to control methods [22]. Because computa-
tional costs are often low for data-driven models, composition with a larger range of POD modes is feasible,
and account for a broader range of system dynamics [23–25]. Auxiliary turbulence terms and physical mech-
anisms sought in numerous Galerkin-POD studies [10, 16, 17] are taken implicitly from the dynamics of the
input data in this application. Data-driven methods that do not require knowledge of the underlying physics
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may also be classified as model-free systems. By definition, data-driven modeling methods seek system dy-
namics from the input or training data and so may be applied to any dynamical system, without regard of
the governing behavior law.

Numerical solution of ordinary differential equations often leads to the propagation of error that can
rapidly accumulate and cause divergence of the system. This is a common issue in POD based dynamical
systems. Often, exclusion of higher order modes that account for dissipation and diffusion mechanisms [26]
changes the energy balance of the system. Other potential pitfalls with POD based systems are incompletely
converged basis modes, and sensitivity to initial conditions [20], which can lead to skewed descriptions of the
flow field. Error propagation in reduced order models has been reduced through a number of recalibration
techniques (e.g. [16, 27–31]). Recalibration has been successfully employed for a wide range of dynamical
systems, including model-free and purely empirical models.

A low-order dynamical system evolving from the proper orthogonal decomposition is explored for a small
sample of the direct numerical simulation of a fully-developed turbulent channel flow hosted at Johns Hop-
kins University [32]. By reducing the spatial and temporal range of the sample, the resulting LODS is
given incomplete information on the dynamics. It is of interest to determine how well a dynamical system
approximates the dynamics of the full system with limited training data. The channel flow is a fundamental
turbulence case that has been explored numerically and experimentally to a great extent. Because the flow
is well-studied within the range of Reynolds numbers tested, it represents an opportunity for development
of reduced order modeling techniques. To date, DNS remains too expensive for direct control applications,
making reduced order modeling techniques a necessary intermediary for flow and aerodynamic control. Low-
order models explored below require between 5 and 30 degrees of freedom, opening the possibility for future
flow control applications. Error propagation within the dynamical system is tested as a function of the
number of modes used to compose the least-squares polynomial fit. The LODS is subjected to iterative re-
calibration by periodically halting the integration of the ordinary differential equations (ODEs) and offering
new initial conditions found by minimizing the error between the vector of predicted mode coefficients and
their counterparts from the POD. The recalibration further requires that the coefficients be continuous and
differentiable across the recalibration, preventing sudden changes in the predicted velocity fields.

II. THEORY

A. Snapshot proper orthogonal decomposition

The method of snapshots was modified from the original POD as a means of reducing the computational
cost for input data with fine spatial resolution. The development follows that proposed by Sirovich [4] pro-
viding an ordered set of modes and associated eigenvalues delineating the energy associated with each mode.
Below, bold math symbols represent vectorial quantities and symbols in plain text are scalar quantities. The
flow field is assumed to be a stochastic function of space and time. Velocity snapshots are then denoted as
u(x, tn), where x and tn refer to the spatial coordinate and time at sample n, respectively, over N total
snapshots t0 ≤ tn ≤ tN .

The POD seeks to decompose the fluctuating velocity field into a modal basis of the form,

u(x, t) =

N∑
i=1

ai(t)Φ
(i)(x). (1)

In equation (1), it is proposed that the velocity can be represented as the superposition of modes Φ(i)(x)
that communicate spatial organization and time-varying coefficients ai(t). By convention in the snapshot
POD, the modes themselves carry no units. It is only in combination with their respective coefficients that
they represent contributions to the velocity field.

The POD modes are sought through solution of a Fredholm integral equation of the second kind,∫
Ω

R(x,x′)Φ(x′)dx′ = λΦ(x), (2)

where R(x,x′) is the two-point spatial correlation tensor, Ω is the physical measurement domain, and λ
are eigenvalues that delineate the integrated turbulence kinetic energy associated with each POD mode.
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Equation (2) is discretized to be solved numerically and modes are computed by projecting the snapshot
basis into the eigenvector space in product with a vector of coefficients Ai(tn). Modes are normalized by
their respective L2-norms forming an orthonormal basis as,

Φ(i)(x) =

∑N
n=1Ai(tn)u(x, tn)

‖∑N
n=1Ai(tn)u(x, tn)‖

, i = 1, ..., N. (3)

Coefficients ai(t) in equation (1) are found by back-projecting the set of stochastic velocity fields onto the
basis of POD modes and integrating over the domain,

ai(t) =

∫
Ω

u(x, t)Φ(i)(x)dx. (4)

Reconstruction with a limited set of POD modes results in a filtered description of the input snapshot basis.
As the POD seeks the energy carrying turbulent structures, accounting for the greatest common projection of
the kernel, low-rank modes are taken to be the most energetic and least isotropic structures in the flow field.
Intermediate and high-rank POD modes account for turbulence kinetic energy that is more homogeneously
distributed and more isotropic, as detailed in Hamilton et al. [33]. The truncation point of the POD mode
basis is often determined by setting a threshold of the energy described by the POD eigenvalues, λ.

B. Least squares polynomial fit

An alternate approach to formulating a dynamical system from the POD follows the method of Perret
et al. [21]. There, the dynamical system was proposed following a polynomial expansion of permutations of
the POD coefficients. A POD basis is truncated to Nr modes, and the coefficients are combined as,

dai
dt

= Di +

Nr∑
j=1

Lijaj +

Nr∑
j,k=1

Qijkajak +

Nr∑
j,k,l=1

Cijklajakal. (5)

In equation (5), the parameters arise from least squares fit of monomial terms onto the time derivative of
the POD coefficients directly, rather than projecting the governing behavior law onto the POD basis. No
additional regularization was implemented in calculating the LODS parameters beyond the normalization
of the data and of the POD modes as detailed in equation (3). The parameters sought are Di, Lij , Qijk,
and Cijkl, relating for constant, linear, quadratic, and cubic mode interaction, respectively. Parameters are
calculated iteratively for each input mode i and involve many terms [21]. Each index i, j, k, l spans the POD
basis selected.

A more consolidated form of the dynamical system is,

dai
dt

=

N∑
k=1

xkAk(a1, ..., aNr
), (6)

where xk are the unknown parameters and Ak are the monomial terms at most cubic. There are a total of
Np parameters that couple the mode coefficients, found by minimizing the error function,

χ2 =

N∑
p=1

[
dai
dt
−

N∑
k=1

xkAk(a1(tp), ..., aNr
(tp))

]2

. (7)

Minimization is accomplished numerically by χ2 = |AX−B|2, where X is the vector of unknown coefficients,
B the vector containing the N samples of dai/dt and A the matrix of terms aj(tp), aj(tp)ak(tp), and
aj(tp)ak(tp)al(tp). In the definition of the coupled set of ordinary differential equations (ODEs) in equation
(5), the POD modes themselves are not employed in the calculating the behavior of the system. One main
advantage is that this approach includes cubic terms which are known to add complexity to the system
without introducing instability [7, 19, 21].
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A potential detriment to large mode bases is that the system requires that a large number of parameters
be calculated. The total number of parameters calculated is then Np = Nr+N2

r +N3
r +N4

r , for the constant,
linear, quadratic, and cubic terms coupling each mode to every other mode in the basis. The system requires
that there be records of both ai and dai/dt. This constraint is not insurmountable with direct numerical
and large eddy simulations, but poses a challenge for many experimental approaches.

Numerical solution of the ODEs in equation (5) results in a new time series of coefficients predicting the
relative intensities of each of the modes forming the LODS. Any quantity issuing from the POD dynamical
system will be denoted below with a caret (ˆ). The least-squares fit of the time derivatives of the POD
coefficients is written dâi/dt, the mode coefficients from the LODS are âi, and are a function of a new vector
of time values t̂. The time resolution of âi(t̂) is related to the error tolerance of the numerical ODE solver
and the number of modes in the system [21, 27].

III. TURBULENT CHANNEL FLOW DIRECT NUMERICAL SIMULATION

An overview of the direct numerical simulation (DNS) of a fully-developed channel flow hosted at Johns
Hopkins University (JHU) is provided here with particular attention paid to the sample data extracted
from the simulation and used in the following analysis. For a complete description of the procedure and
simulation, the reader is referred to the documentation provided by JHU [32] (see also, [34, 35]). Here, focus
is placed on interpretation the POD and reduced order models. Accordingly, a relatively small sample of
the full channel flow is selected, limiting both the spatial and temporal ranges of the data.

The channel flow DNS uses periodic boundary conditions in both the streamwise and spanwise directions
and no-slip boundary conditions at the walls. The Navier-Stokes equations are solved using a wall-normal
velocity-vorticity formulation [36], according to which solutions are provided using a Fourier-Galerkin pseudo-
spectral method for the streamwise and spanwise directions and seventh-order Basis-splines (B-splines) collo-
cation method in the wall normal direction. Time integration is performed using a third-order Runge-Kutta
method. The simulation was performed using the petascale DNS channel flow code (PoongBack) [37]. The
simulation is performed for approximately a single flow through time of 26 non-dimensional time units, ob-
tained with the streamwise length of the domain 8πH and a bulk flow velocity of 0.99994. The Reynolds
number of the flow based on the outer scaling is Reb = Ub2H/ν = 3.9998× 104; the complementary friction
velocity Reynolds number is Reτ = uτH/ν = 9.9935× 102.

Data sampled from the full DNS and discussed below represent a small subset of the total provided in
the database. Data spans the channel half-height, −1 ≤ y/H ≤ 0 (normalized by the channel half-height
H). Measurement points were selected in the wall-normal direction by taking every fourth point from the
full resolution of the DNS. Resolution of the data in the streamwise direction is set to ∆x/H = 0.0123
and in the spanwise direction to ∆z/H = 0.0061. A total of 512 snapshots were sampled from the channel
flow, representing a small portion of the full simulation time, t ∈ [0, 3.32]. Parameters of the sampled data
are summarized in Table I, and visualized in the schematic in Fig. 1(a). Coordinates shown in the table
are normalized by the channel half-height H; velocities are normalized by the bulk fluid velocity Ub; time
resolution is normalized by H/Ub. Turbulence seen in the central region of the channel is expected to exhibit
the passage of large, anisotropic structures, although in an ensemble sense, the turbulence in the outer layers
is more isotropic. The half-channel velocity profile is shown in viscous units in Fig. 1(b).

TABLE I. Details of sampled volume data.

spacing in x−direction ∆x = 12.3
spacing in y−direction 0.0016 ≤ ∆y ≤ 6.2
spacing in z−direction ∆z = 6.1
time resolution between snapshots ∆t = 0.0065
measurement points nx × ny × nz =32 × 64 × 32
number of snapshots nt= 512

Ensemble-averaged mean velocities are shown in Fig. 2. Full resolution of the channel to this depth is
represented by more than 256 points; significant down-sampling has occurred in the presented snapshots and
is evident in the contours of the volume shown for mean velocities. Downsampling in this way limits the
range of dynamics present in the dataset to a subset of the full DNS. The mean flow field in the channel
shows a streamwise velocity two orders of magnitude larger than the wall-normal and spanwise components.
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(a)Schematic of the lower half of the
channel flow DNS simulation space.

Sample volume was sized to span from
the wall to the centerline of the channel

(b)Half-channel velocity profile shown in inner scaling.
Dashed lines correspond to the viscous sublayer and the

log-layer.

FIG. 1. Schematics indicating the sampled data in the channel and the velocity shown in viscous wall units.

Accordingly for wall-bounded flows, the high-shear region is confined to the near-wall region. The magnitude
of U rapidly increases below y/H ≤ −0.8 and changes little toward the center of the channel. Spanwise
variations remain in the ensemble averaged velocity field, reflecting the down-sampling of the dataset. In
the full DNS, the mean wall-normal and spanwise velocities approach zero. Although the magnitudes of V
and W are very small compared to U , some features remain in Figs. 2(b) and 2(c) that are representative
of the data sample, but differ from the spatially-averaged statistics of the full DNS.

(a)U (b)V (c)W

FIG. 2. Streamwise, wall-normal, and spanwise mean velocities in channel flow scaled by the bulk velocity.

Turbulence in the sampled data is the field of interest in the development of the following dynamical
system. Fig. 3 shows the turbulence kinetic energy (k = uiui/2) and several turbulent stresses, averaged
only in time. Stress fields in the figure are used as the basis for comparison for the POD representations of
the flow field and LODS below. Streaks are evident near the wall, shown in both k and uv, as well as a larger
structure in the lower-right corner of the sampled volume. Larger structures of lower magnitude are seen
toward the center of the channel. Systems with a large range of structures that are significant to the flow
dynamics are notoriously difficult to capture with POD based modeling approaches due to the number of
modes that must be retained in the flow description. Wall-normal and spanwise normal stresses are smaller
in magnitude than uu but show similar size and distribution of turbulence structures. Streaks near the wall
as seen in k (Fig. 3(a)) arise from contributions of the streamwise and spanwise normal stresses but are
absent in vv.

The streamwise/wall-normal Reynolds shear stress uv (Fig. 3(c)) is the only off-diagonal term from the
turbulence stress tensor expected to have a non-null profile in statistics from the full DNS. The figure
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shows several regions of large magnitude below y/H ≤ −0.8; away from the wall uv is comparatively small.
According to symmetry in the channel flow, it is expected that uw and vw tend toward zero with complete
statistical convergence; because the sample analyzed here spans a relatively small space and time interval
of the DNS, stresses including fluctuations in the spanwise direction exhibit features on the same order as
uv, demonstrated in Fig. 3(d). Deviation of vw from the fully converged, null statistical profile reflects
the turbulence in the sampled volume that occurs within the down-sampled temporal and spatial range.
Turbulence statistics from the sampled data shown in Fig. 3 significantly deviate from the fully converged
statistics of the DNS by design. It is of interest in the following analysis to determine whether the proposed
dynamical systems can predict turbulence statistics accurately with down-sampled data.

(a)k (b)uu (c)uv (d)vw

FIG. 3. Turbulence kinetic energy and selected Reynolds stresses for sampled channel flow volume.

IV. POD

The POD is applied to the sample data where each snapshot is taken as a 3D field of fluctuating velocity.
The cumulative summation of eigenvalues in Fig. 4 indicates the number of modes required to reach a desired
threshold of the integrated kinetic energy. The distribution of eigenvalues normalized by their sum is shown
in Fig. 4 (inset), which by definition demonstrate the distribution of turbulence kinetic energy per mode,
normalized by the total turbulence kinetic energy. The low-order modes represent the largest portion of the
integrated turbulence kinetic energy in the kernel according to the definition of the POD. The relatively
flat portion of the spectrum in the inset figure corresponds to a large number of energy-containing modes.
Beyond n ∼ 102, the spectrum falls off quickly indicating a rapid decay in the energy carried by high-order
modes.

In using volumetric data, the ability of the POD to quickly account for the full character of the flow is
diminished and the resulting eigenvalue spectrum is accordingly flattened. The transverse and streamwise
directions are characterized by periodic boundary conditions, and are considered to be homogeneous in fully
converged statistics. Homogeneity in the kernel reduces the efficiency of the POD and causes modes to
resemble those from a Fourier decomposition, retarding the convergence of the basis. Time resolution of the
velocity snapshot sample is equal to the maximum resolution of the DNS data stored from the simulation,
at every t = 0.065. At this resolution, velocity snapshots are not statistically independent, and correlation is
expected between successive fields. The resulting POD coefficients are not considered uncorrelated in time
as they are in other applications of the POD, but rather are each a time series.

According to the thresholds seen in Fig. 4, five modes are required to account for 50% of the integrated
turbulence kinetic energy, 13 modes are required to reach 75%, and 28 modes are required to account for
90% of the energy in the kernel. The mode basis describes the turbulence; each mode is associated with
spatially coherent turbulence structures in the input flow data. Individual structures illustrated by the
POD modes are not discussed at length in the following development and are shown only to convey the
fact that low-rank modes represent flow features in the center of the channel as well as in the near-wall
region. Of the full basis, the only POD modes and coefficients specifically discussed in the following reduced
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FIG. 4. POD eigenvalues showing the cumulative summation of energy and the normalized energy content by mode
(inset). Thresholds accounting for 50%, 75%, and 90% of the turbulence kinetic energy shown in gray requiring
Nr = 5, Nr = 13 and Nr = 28 modes, respectively

(a)|φ(1)| (b)|φ(2)| (c)|φ(4)| (d)|φ(8)|

FIG. 5. Magnitude of selected POD modes used in reduced order models.

order model are modes 1, 2, 4, and 8. The magnitude of each selected mode is shown in Fig. 5. In
each subfigure, from left are the vectorial magnitudes of modes in increasing order (decreasing energy),

calculated as |φ(i)| =
√
φ

(i)2
x + φ

(i)2
y + φ

(i)2
z . Color information is included for each mode to show that they

have each been normalized, POD modes themselves are unitless and do not represent energy. It is only in
linear combination with their respective dynamic coefficients that the POD modes are able to express the
fluctuating velocity field.

Fig. 5 indicates that the near-wall behavior of the channel flow is present in many POD modes. The POD
requires many modes to fully describe this behavior; large structures are seen in all three components of the
POD modes away from the wall in the central region of the channel. The low-rank POD modes accounting for
the majority of the integrated turbulence kinetic energy are used to formulate low-order dynamical systems
in the following sections. The coefficients associated with modes including those shown in Fig. 5 are taken
to express the dynamics of the turbulence and are discussed in greater detail below. An advantage to the
POD is that modes are scaled based on energy content rather than time or length scales. This allows POD
modes, in combination with their respective coefficients, to simultaneously contribute to the dynamics in the
near-wall region and the center of the channel, provided that both regions are present in projections of the
velocity field onto the POD subspace.

http://dx.doi.org/10.1063/1.4985203


9

V. LOW ORDER DYNAMICAL SYSTEM

The dynamical system derived according to the formulation in section II B is expected to account for
turbulence that includes fluctuations of spanwise velocity in the channel flow. Adding complexity, such as
three-dimensional turbulence, to the reduced order models requires a large range of POD modes to accurately
describe, but makes for a more relevant dynamical system. The capability of LODS to represent the full
channel flow is tested according to the number of modes used to define the system. The modes analyzed
in the following range between three modes (the minimum required to reconstruct 3D turbulence shown
in Hamilton et al. [33] and 41 POD modes, corresponding to the 95% kinetic energy threshold from the
cumulative summation of POD eigenvalues.

The traditional Galerkin projection is not discussed at length here as the resulting dynamical systems
function best in cases where turbulence is relatively low unless auxiliary turbulence mechanisms are added
for stability [10]. Galerkin-POD systems have already been investigated for a pipe flow in Aubry et al. [6]
and a channel flow in Ilak and Rowley [38], although the Reynolds number is moderate in each case. In
the current study, the centerline Reynolds number Rec ∼ 2.3 × 104, an order of magnitude larger than the
previous documented reduced order modeling techniques. The Galerkin projection for this flow would be of
benefit for comparison to the current work, and may be a beneficial platform for testing current efforts in
model balancing with non-linear eddy viscosity models.

Rather than projecting modes onto the governing equations and seeking ODEs for the coefficients, the
low-order system pursued here follows the least-squares fit method of the time-varying coefficients directly.
The dynamical system predicting the behavior of the mode coefficients is obtained from the derivatives of the
coefficients from the POD. The least-squares type LODS requires simultaneous realizations of both ai and
dai/dt. Data sampled from the channel flow DNS have sufficiently high temporal resolution to yield accurate
estimates of the time derivatives of the POD mode coefficients. Corresponding with the 90% threshold, 28
POD modes are used to establish the LODS parameters seen in Fig. 6. The LODS of this rank (28 modes,
90% energy) is used in the recalibration discussed below. Although the parameters resulting from the least-
squares fit shown in Fig. 6 do not arise from projection onto the governing equations, they are interpreted
analogously where possible. The constant parameter Di is quite small compared to the others employed
in the current analysis. One interpretation of the constant parameter from the perspective of dynamical
modeling is as long-term growth or instability of each respective POD mode; that these parameters are
small but non-zero implies that they are subject to amplification or decay and may ultimately lead to long
term instability if higher-order relationships are not taken into account. Transient or spatially developing
turbulence could be reflected by mode amplitudes that are not zero-centered, which the constant parameter
would attempt to correct. In a traditional Galerkin projection, the linear parameter Lij arises from the
viscous term in the Navier-Stokes equations. The contribution to the viscous dissipation is largely accounted
for by the smallest scales of turbulence, not accounted for in the truncated mode basis. Lij is the largest in
magnitude of the fit parameters indicating a strong linear interaction between modes. The linear parameter
is anti-symmetric about the diagonal i = j, and is of greatest magnitude in the off diagonals where i = j±1.
This is taken to indicate that the linear interaction is strongest in modes of similar rank.

Through analogy to the Galerkin-POD procedure, the quadratic parameters Qijk are taken to represent the
combined contributions of convective and pressure terms. Effects of the mean flow field and the fluctuating
pressure reflected in the LODS though the turbulent dynamics, although they do not appear as variables as
far as of the polynomial parameters. In the interpretation of the Galerkin projection, fixing j = 0 or k = 0
is typically associated with convection. In the LODS developed here, the mean flow field is omitted and
the POD basis does not include a zeroth index. The mean flow is implicitly included in the model through
the velocity snapshots although it is not considered as a variable in the dynamical system. Permuting the
indices j and k in the quadratic term yields identical values; the interactions expressed by Qijk are of mode
i with a combination of j and k.

LODS parameters couple the mode coefficients âi in the system of ODEs to be solved as in equation (5).
The degree to which a mode is coupled to any others is shown as the relative magnitudes of each parameter.
Extreme values imply strong correlation or anti-correlation in the dynamic evolution of the modes. Small
values of the parameters are taken to indicate that a combination of the modes in question is negligible in
the evolution of the system. The least-squares fit from equation (7) matches dai/dt calculated from the
time series of POD mode coefficients to one solved in the ODEs dâi/dt, shown in Fig. 7(a). The figure
shows the polynomial fit of the LODS to the time derivatives of the POD coefficients in the sample space
(black lines). Fits shown in the Fig. 7 use Nr = 5 (dashed gray lines), Nr = 13 (solid gray lines), Nr = 28
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(a)Di (b)Lij (c)Qij1

FIG. 6. Constant 6(a), linear 6(b), and quadratic 6(c) parameters from least-squares fit of dâi/dt using 28 modes.
For the quadratic term shown, the index k = 1 is fixed and other components are omitted. Cubic term is not shown
for brevity.

(dotted gray lines), Nr = 41 (dash-dot gray) modes accounting for 50%, 75%, 90%, and 95% of the energy
of the input data, respectively. Trends of the fit of dâi/dt indicate that truncating the modal basis acts as
a low-pass filter on dai/dt. Major features of the time derivatives are well-represented with few modes but
higher frequency dynamics of ai are missed in the LODS of low rank.

Solving the ODEs results in predictions of coefficients âi shown in Fig. 7(b). As with their time derivatives,
the POD coefficients are shown in black lines and those resulting from reduced order model are shown in
gray. Initial conditions are required for solutions, taken here as the first value of each coefficient from the
POD, corresponding to t = 0 from the channel flow DNS. The choice of initial conditions is arbitrary and the
resulting approximations âi evolve distinctly for each choice, although choosing a0 = ai(t = 0) is convenient
in that the coefficients take a known trajectory from this point to which the model may be compared.
Sensitivity of the solution to initial conditions is exploited below to recalibrate the LODS and extend the
predictions far past the input time.

Deviation from the time derivatives of the POD coefficients and their respective least squares fits (dai/dt
and dâi/dt) propagate through the solution of the ODEs seen clearly in the difference between ai and âi
in Fig. 7(b). The fit between the POD coefficients and their respective predictions by the LODS are best
for low mode number n and for high LODS rank Nr. Error propagation through the solution of the ODEs
is most notable in the highest modes used in the LODS. Deviation from the expected trajectory is seen
clearly for modes n = 4 and n = 8 for low-ranking LODS, bottom of the figure. When using 13 modes
(accounting for 75% of the input energy), the coefficient â8 is nearly periodic and does not match the POD
coefficients accurately. Error propagation beyond the input time of the sampled DNS grows quickly to the
point where modeled coefficients âi eventually diverge and numerical solution is no longer possible. The
ability to predict outside of the input time depends on the number of modes used to formulate the LODS
and the error tolerance in the numerical solution of equation (5).

Expanding the basis to include Nr = 28 adds a greater number of mode interactions to the LODS and
is able to account for a broader range of dynamics. The time derivatives shown in Fig. 7(a) demonstrate
a tighter fit than in the 5-mode LODS, as expected. Error is reduced by allowing a greater range of mode
coupling through the fit parameters. In the 14-mode LODS, significant deviations between dai/dt and dâi/dt
are not seen until n = 16. Increasing the mode basis used in the LODS and decreasing the error propagated
through the ordinary differential equations naturally increases the ability of the LODS to predict the mode
coefficients, shown in Fig. 7(b). As with the 5-mode LODS, error that propagates through the solution
of the coupled ODEs is seen in the predicted coefficients âi. For consistency of comparison, the LODS is
restricted to making predictions within the timespan of the sampled velocity snapshots.

To quantify the goodness of fit between the POD and LODS coefficients, the normalized RMS error is
calculated as,

NRMSE(ĝ) =

√
(g − ĝ)2

max(g)−min(g)
, (8)
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(a)dai/dt (b)ai

FIG. 7. Time derivatives of POD mode coefficients (black) and their respective LODS approximations in gray with
symbols. Increasing the rank of the LODS leads to better fit between coefficients 7(b) and derivatives 7(a). For each
subfigure, Nr = 5 dashed gray lines, Nr = 13 solid gray lines, Nr = 28 dotted gray lines, Nr = 41 dash-dot gray lines.

where g is a reference quantity (e.g. coefficients from the POD), ĝ is the quantity derived via LODS, and
the root-mean-square error is normalized by the span of the reference quantity.

For the LODS, error is calculated between the coefficients ai and âi. Fig. 8 shows the normalized RMS
error of the selected modes discussed above as a function of the LODS rank. Coefficients evolving from
the LODS have a resolution in time that is a function of the numerical tolerance of the solver. In order
to make difference calculations, the predicted coefficients âi(t̂) are interpolated to the original time input t.
Interpolation of the derivatives is not necessary as they are calculated to fit the input time by definition.
Reflecting the trends seen in Figures 7(a) and 7(b), the error associated with the derivative of any particular
mode coefficient decreases as a function of the number of modes used in the truncated POD basis Nr. It
is not always the case, however, that the normalized RMS difference increases with n for a fixed basis Nr;
there many cases in which a higher ranking modes exhibit less error than a low rank mode within a given
basis.

The normalized RMS error between mode coefficients and their LODS predictions is not as well-behaved
as the error for the derivatives. In a general sense, NRMSE(âi) decreases as a function of the rank of the
LODS, indeed the limit of the RMS error must be zero as Nr → N , but the decrease in error does not appear
to be monotonic. For example, the normalized RMS error between a1 and â1 for Nr = 15 is much larger than
for LODS of lower rank. These trends reflect dynamics added to the system through the mode interactions
described by the LODS parameters. However, added mode interactions do not necessarily follow predictable
and regular increase the performance of the dynamical system, and certain mode interactions may lead to a
decrease in LODS accuracy. RMS errors for âi and dâi/dt are shown in Figures 8(b) and 8(a) for selected
mode coefficients considering LODS up to rank Nr = 41. The normalized RMS error for dâi/dt is smoother
overall than that of âi. Interestingly, the error associated with dâ2/dt is less than that of mode 1 for all of
the LODS tested, regardless of rank. Mode 1 characterizes the turbulence structures most important to the
dynamics of the input. Accordingly, it interacts strongly with other modes and its time-evolution converges
toward the expected value slowly.
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(a)Normalized RMS error of coefficients derivatives for
modes 1, 2, 4, and 8 according to rank of the LODS.

(b)Normalized RMS error of coefficients for modes 1, 2, 4,
and 8 according to rank of the LODS.

FIG. 8. Error associated with selected mode coefficients according to total number of modes composing the LODS.

VI. PERIODIC LODS RECALIBRATION

Numerical solutions presented above propagate error through âi that compiles and causes the system to
grow unstable and diverge at long solution times. The dynamics determined by the parameters Di, Lij ,
Qijk, and Cijkl, specify mode interactions; the trajectory of the system also requires initial conditions, above
taken as ai(t = 0). Using different initial conditions produces distinct coefficient evolutions that obey the
dynamics specified by the LODS parameters. The sensitivity of the LODS to supplied initial conditions is
used as a means to periodically recalibrate the solution, resulting in a more robust system capable of making
predictions at much longer solution times.

Recalibration is undertaken by matching the vector of LODS coefficients at the end of the integration
time âi(t = tf ) to the known history of the POD coefficients. The time to which the vector of coefficients is
matched is determined by minimizing the RMS difference between âi and ai. The time index of the matched
data is denoted with the subscript m and is referred to as the ‘matching time’. New initial conditions are
provided using the POD coefficients at the matching time,

ai(tm) 3 min

√√√√ 1

Nr

Nr∑
i=1

(ai(tm)− âi(tf ))2, 0 ≤ tm ≤ tf . (9)

With refreshed initial conditions, a new solution to equation (5) is calculated and concatenated with the
previous solution. In the mode coefficient matching process, the matched coefficients ai are piecewise con-
tinuous across the recalibration and remain bounded in the ranges resulting from the POD. To prevent the
LODS from falling into a closed orbit, the time span of each integration is assigned randomly up to the
length of the original input signals, t = 3.32. Recalibration of the LODS limits the error propagation in the
coefficients at the cost of introducing discontinuities in âi. Sharp discontinuities in the predicted histories of
the mode coefficients are limited by adding further constraints to the recalibration process. A short region is
defined between periods of recalibration in which the solution which âi are interpolated between tf and tm.
At both ends of the interpolated region, the derivatives dâi/dt are matched and the predicted coefficients
are smoothed to reduce potential discontinuities introduced to velocity reconstructions.

The sensitivity of the LODS to initial conditions is beneficial in that it implies a ready supply of starting
points are available within the known trajectories of ai. However, the number of possible initial conditions
is limited to the number of snapshots in the input data. Stated otherwise, the finite record of snapshots is
represented as a finite number of linear combinations of modes and coefficients, in this case N = 512, and
can thus predict a finite number of coefficient trajectories. This constrain is relaxed by guiding the vector of
coefficients âi(tf ) toward their matched values, rather than replacing them directly with ai(tm). The effect
is to find a vector of coefficients that is intermediate to both the above vectors,

a0,new = (α)ai(tm) + (1− α)âi(tf ). (10)

The weighting coefficient α determines the balance between a known vector of coefficients from the POD
history ai(tm) and the final predicted value from the LODS âi(tf ). The effect of guiding the coefficients from
the LODS to new values makes a more complete range of coefficients available as initial conditions, rather
than restricting them to the 512 known combinations from the POD history. In the following demonstration
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of LODS recalibration, the weighting coefficient is assigned to α = 0.5 making the new initial conditions
exactly half way between the final predicted coefficient vector and its closest match from the POD history.

(a) (b)

FIG. 9. Histograms depicting 9(a) the timespan of the new ODE solution and 9(b) the matching time for new initial
conditions in the periodic recalibration process.

The length of integration times is assigned randomly between the range 0 ≤ t ≤ 3.32. With sufficient
instances of recalibration, the histogram of timespans tends toward a flat distribution. Fig. 9(a) shows
the integration timespans of a low-order dynamical system undergoing 50 periods of recalibration. The
associated distribution of matching times tm after the same 50 instances of recalibration is shown in Fig.
9(b). While the distribution of timespans should be flat by definition, the distribution of tm is not similarly
constrained. Coefficients from the LODS âi are compared to those from the POD record ai in Fig. 10.
The figure indicates that the modeled mode coefficients âi remain bounded in the neighborhood of ai. The
recalibration process allows the coefficients to take on values outside of their known histories from the POD.
The dynamics are limited to making predictions determined by the LODS parameters, but the original
POD coefficients account for only 512 states, corresponding to the 512 snapshots from the sampled data.
By allowing the vector of coefficients to take on new values, the predicted coefficients fill the vector space
defined by the truncated POD basis.

In extending the time series of the modeled coefficients, additional features of their time evolution become
evident. Each of the selected modes in Fig. 10 shows some periodicity that is determined by the dynamics of
the input. Here the LODS with 50 recalibrations spans up to approximately t = 95, more than 3 times as long
as the full DNS and nearly 30 times the sampled data. The modeled coefficient for mode 1 shows large, low-
frequency features. In any application of the POD, the first modes are associated with energetic turbulence
structures. The predicted coefficient â1 has a range that is approximately 50% larger than its equivalent
in the range of the sampled data, but does not grow unstable with the recalibration scheme. Because only
a limited range of DNS data was sampled, it is reasonable to expect that the coefficients produced by the
POD might not represent the full range required to reconstruct every snapshot in the simulation. During
recalibration, the modeled coefficients take on combinations of values not explicitly contained in the set of
ai, effectively increasing the density of the coefficients within a similar space. The other coefficients shown
in Fig. 10 instead take on smaller ranges outside of the input time, and appear more noisy. Despite the
smoothing employed at the boundaries of each recalibration, noise is introduced to the system whenever the
initial conditions are reset.

Ultimately, it is of interest to compare the performance of the LODS to the POD and the statistics of
the sampled data in terms of turbulence. The fluctuating velocity field was reconstructed using the POD
coefficients according to equation 1, and subsequently used to calculate the modeled Reynolds stress tensor

ˆuiuj . Reconstructing the turbulence field with a truncated POD basis amounts to applying a non-linear
low-pass filter to the input data according to energy; any representation of the turbulence field produced by
a truncated POD basis must necessarily contain or describe less turbulent kinetic energy than the full field
description in a global sense. However, shear terms may be over represented by a truncated basis. When
this is the case, higher-order modes leak energy from the shear terms, although they make a positive global
contribution to the TKE. Fig. 11 compares the streamwise normal stress calculated from the input snapshot
basis, the reduced order description from the truncated POD basis, and the periodically recalibrated LODS,
respectively from left. Only the streamwise normal stress is visualized as it is the dominant contributor to
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FIG. 10. POD mode coefficients (black) and their respective LODS approximations (blue) calculated from the time
derivatives shown in Fig. 7(a) after 50 periods of recalibration.

the turbulence kinetic energy. As anticipated, the POD estimate of uu, Fig. 11(b), picks out the large scale,
energetic features of the statistically derived Reynolds stress shown in Fig. 11(a). Large structures below
y/H = −0.5 are captured successfully by the POD, including features very near the wall. Features captured
by the LODS in Fig. 11(c) are similar to the POD estimates. Differences between the POD and LODS
estimates are seen most clearly in the near-wall region. The LODS exaggerates the effects of POD filtering;
regions of low stress appear muted, and regions of high stress (near the wall and around y/H = −0.5) are
amplified compared to the POD reconstruction.

(a)uu (b)POD estimate of uu. (c)LODS estimate of uu.

FIG. 11. Comparison of streamwise normal Reynolds stress from sample statistics, POD reconstruction, and LODS
estimate, from left.

Comparing the streamwise/wall-normal Reynolds shear stress uv as in Fig. 12, it is evident that the LODS
makes predictions not seen by the POD estimate. Fig. 12(c) predicts a second structure of high magnitude in
the center of the channel. This structure is not present in either the POD or the sampled statistics, showing
that the model is predicting outside of the input dynamics. Both the POD and the LODS exaggerate regions
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where uv ≥ 0 for y/H ≥ −0.6; although neither the POD nor the LODS have any difficulty reproducing
the character of the shear stress. The superposition and interaction of a large basis of modes is necessary to
converge toward null values of the stresses far from the wall.

(a)uv (b)POD estimate of uv. (c)LODS estimate of uv.

FIG. 12. Comparison of streamwise/wall-normal Reynolds shear stress from sample statistics, POD reconstruction,
and LODS estimate, from left.

To benchmark the performance of the LODS, profiles of spatially averaged quantities are compared in Fig.
13. In each subfigure, a single component of the Reynolds stress tensor is averaged in the streamwise and
spanwise directions, denoted with angle brackets 〈·〉. Subfigures compare the spatially averaged turbulence
stresses for the full channel flow DNS as a dashed black line, reproduced from Graham et al. [32], with the
profiles from the sampled statistics (gray lines), the truncated POD basis (blue), and the LODS (orange).
From the figure, it is clear that the LODS makes estimations of the Reynolds stresses in the channel that
are at least as accurate as those derived from the truncated POD basis. In certain areas of the flow, the
LODS makes estimations of the turbulence stresses that are quite similar to those of the full DNS. The flow
description of the LODS has a longer time record due to the periodic recalibration algorithm and is able to
fill out the state space of the coefficients. Letting the coefficients take on values other than those provided
in the POD history effectively accounts for snapshots that obey the dynamics of the channel flow, but are
not contained in the original sample. The relationships defined by the LODS parameters dictate the limits
of the system dynamics, and allow for more possible states than the training data.

(a)〈uu〉 (b)〈vv〉 (c)〈ww〉

(d)〈uv〉 (e)〈uw〉 (f)〈vw〉

FIG. 13. Spatially averaged profiles of Reynolds stresses comparing statistics of sampled data (black), POD recon-
structions (blue), and LODS with periodic recalibration (orange) to the spatially averaged profile from the full DNS
(black,dashed).
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Profiles of the spatially averaged Reynolds normal stresses are easily compared in Figure 13. The LODS
makes approximations of the streamwise normal stress that are within 8% of the full DNS statistics except
between −0.65 ≤ y/H ≤ −0.45. In this region, the LODS exaggerates a peak in the Reynolds stress present
in the sampled data and subsequently in the POD. The wall-normal Reynolds stress in Fig. 13(b) is a
close fit in the near wall region and in the center of the channel. Between −0.9 ≤ y/H ≤ −0.1, the LODS
underestimates 〈vv〉. The spanwise Reynolds normal stress meanders around the profile for the full DNS
between −0.9 ≤ y/H ≤ −0.25. It is hypothesized that with a longer simulation time or greater flexibility
in the recalibration process, 〈ww〉 may converge toward the DNS profile more closely. Fig. 13 demonstrates
that the LODS is easily distinguished in terms of the turbulence shear stresses. For example, the LODS
profile of 〈uv〉 makes a better estimate near the wall than the sampled statistics or the POD approximation.
Spatially averaged shear stresses 〈uw〉 and 〈vw〉 tend toward zero with perfect statistical convergence and
are typically excluded in channel flow discussions as spanwise fluctuations are less important than those in
the streamwise and wall-normal directions. The dashed lines in Figures 13(e) and 13(f) are set to identically
zero, and do not come from the DNS documentation. For these shear stresses, the profiles of the LODS are
much closer to the expected values than the other approximations.

TABLE II. Normalized RMS error (%) between the DNS turbulence field and approximations from the sampled
data, the POD description, and the LODS with periodic recalibration. For the shear stresses uw and vw, errors are
normalized by the span of each respective approximation, as the range for the DNS is identically zero.

uu vv ww uv uw vw
Sample 8.03 21.78 16.33 40.93 0.28 0.32
POD 7.79 23.73 18.65 40.81 0.28 0.32
LODS 13.61 26.41 21.1 36.98 0.30 0.28

Normalized RMS errors according to equation (8) are calculated for the spatially averaged profiles shown
in Fig. 13, detailed in Table II. Quantifying the deviation between the spatially averaged profiles of uiuj
and the estimates from the reduced order descriptions indicates that the LODS error across the channel half-
height is slightly greater that for the POD. From Fig. 13 it is clear that errors arise from localized events.
The greatest increase in rms error is seen for uu, approximately 5%. Error shown for the shear stresses uw
and vw are very similar to those of the POD and the sample, although the figure clearly demonstrates that
the LODS makes a better estimate. For these shear stresses, the DNS profiles are identically zero and the
normalization used in equation (8) is inappropriate; for uw and vw, the RMS error is normalized by the
span of the estimator rather than the span of the DNS profile, leading to the similar values in the table.

VII. CONCLUSIONS

Low order dynamical systems are formulated for the fully-developed turbulent channel flow DNS hosted
at Johns Hopkins University. The dynamical system is derived by seeking a set of parameters that quantify
mode interaction and result in a system of coupled ODEs through a least-squares polynomial fit. The LODS
demonstrated in this study combines the time-dependent POD mode coefficients directly in formulating
a dynamical system, in contrast with the Galerkin projection, which instead seeks a dynamical system
through the inner product of the Navier-Stokes equations with spatially coherent proper orthogonal modes.
Parameters resulting from the LODS are analogous to those from the Galerkin projection; in addition to
the linear and quadratic terms in the Galerkin system, there are constant and cubic terms, which add both
complexity and stability to the dynamics.

The LODS composed here for the turbulent channel flow does not arise from a mathematical projection
onto the governing behavior law of the flow. While this may appear to limit the physical significance of the
dynamical system, it also adds generality to the method. In removing the physical meaning associated with
each set of parameters, they become more flexible, in that they may take on a range of values that might
appear inconsistent with the behavior laws governing the flow, but are within the limits for dynamics defined
by the input data. At the same time, extending an analogy to the linear and quadratic parameters provides
an estimate of the influence of viscous or convective terms in the LODS. An additional benefit in the current
definition of the reduced order model is that it derives all flow parameters implicitly from the input data,
whereas the Galerkin-POD procedure requires that parameters like eddy viscosities be supplied by the user.
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A difference between the LODS and DNS statistics is expected; spatially averaged profiles of the Reynolds
stresses demonstrate that the low-order dynamical system can reproduce the turbulence within 5% of the
statistical error of the sampled data. The dynamics included in the system are defined by the parameters that
quantify mode interaction, and ultimately reflect the data included in the sampled basis of velocity snapshots.
The sample used to compose the LODS represents a small slice of the full simulation; the complete set of
dynamics and turbulence was not included in the kernel of the POD and cannot be fully reproduced by the
LODS.

It is of interest in reduced order modeling for any application to determine to what extent a system
may account for dynamics beyond the training data. The POD algorithm provides a set of modes that
describe spatially coherent components of the input. By increasing the dynamics accounted for in the kernel
of the POD, the reduced order model above will be better equipped to match statistics drawn from the
full simulation. A limitation to the LODS developed here is the need for simultaneous realizations of both
the mode coefficients and their respective time derivatives, which are difficult to achieve for many practical
applications. High-fidelity numerical simulations or time-resolved PIV and dual-time PIV measurements
have been used in the past [21, 27] to accurately develop time derivatives of the POD mode coefficients.

The low-dimensional model explored here is capable of predicting velocity snapshots that are not included
in the input data or the range of the dynamics from the POD mode coefficients. Using a larger set of
sample data will produce POD modes that are statistically more converged, and will certainly lead to better
approximation of the full DNS statistics. A thorough analysis of the system response to perturbations
and input functions would advance the control capabilities of low-dimensional models like those composed
here. Correlating an upstream signal with the POD coefficients would provide a more intuitive recalibration
method, leading to accurate reflections of inflow disturbances. Control models of these sorts would be
attractive for a variety of aerodynamics and flow control applications.
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