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A reduced order model of a channel flow is composed from direct nu{ ical simulation data
obtained from the turbulence database hosted at Johns Hopkins University. apshot proper or-
thogonal decomposition (POD) is used to identify the Hilbert space fr ich thegeduced order
model is obtained, as the POD basis is defined to capture the optimal rg@ontent by mode. The

OD mode coefficients
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the classical Galerkin projection. The resulting low-order dyn
basis modes demonstrating that non-linear mode interactions do 0 a monotonic decrease
in error propagation. A basis of five POD modes accournts for 50%%f the integrated turbulence
kinetic energy but captures only the largest features of the turbulence in the channel flow and is
not able to reflect the anticipated flow dynamics. Usé::ﬁve odess the low-order model is unable

to accurately reproduce Reynolds stresses and root-mean-square error of the predicted stresses is
as great as 30%. Increasing the basis to 28 modes,ac ts f(?DQO% of the kinetic energy and adds
intermediate scales to the dynamical system. Di nce betwéen the time derivatives of the mode
coefficients and their least-squares fit is amplified in numerical integration leading to unstable
long-time solutions. Periodic recalibration of t ynamical system is undertaken by limiting the
integration time to the range of the sample%\ﬁ\> d Offering the dynamical system new initial
%pushing the mode coefficients in the end of

ng riginal trajectories identified through a least-
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ed order models like the one undertaken here are widely
implemented for control app 5, derive all necessary parameters directly from the input, and
compute predictions of system dymamicsefficiently. Speed, flexibility, and portability of the reduced
order model come at the cost of strict,data requirements; the model identification requires simulta-
neous realizations of mode fficients and their time derivatives, which may be difficult to achieve
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Publishing I. INTRODUCTION

Reduced order modeling describes a wide range of approaches that approximate complex system dynamics
of large or infinite degrees of freedom with a limited number of degrees of freedom. For applications in turbu-
lence, the goal is typically to simplify the Navier-Stokes (NS) equations, by isolating the important dynamics
for a given flow with an effective use of computational resources. Of these approaches, modal decomposition
methods are frequently selected as they add definition and organization to the yector space of the input in-
formation and offer intuitive means of filtering or truncation. The proper ortzzf)nal decomposition (POD)
is a widely-used method as it represents the optimal organization of turbuleiice styuctures based on energy
[1]. Careful selection of the point of truncation of the mode basis retai rfrea st range of dynamics

in the system with the least number of modes [2]. For turbulent flow hlgh spatial resolution, the
classical POD presented by Lumley [3] is not as computationally efficie method of snapshots as per
Sirovich [4].

An attractive extension of the POD for dynamical system mo
used to reconcile the modal basis with a governing behavior law
differential equations [5]. The Galerkin-POD procedure was

the lerkin projection, is widely
lt'm-g._m a minimal set of ordinary
turbulent shear flow modeling by

0, 11]. However, the ability of the POD
to represent the dynamics of a system is quite sensitive t@ transien avior; deviations of the system from
the reference frame of the POD quickly result in diver he low-order dynamical system (LODS)
[12-15]. Galerkin-POD models offer great potential in ¢ '1puta‘%_ s of complex dynamics given that closure

i reduced order models focus on accounting for

assumptions can be provided. Recent work in Galetkin-P
additional turbulence terms, such as eddy v1scoa%\ 0, 165 17] and diffusion models to keep the system
d

compressible flows [9], and bluff body wakes and aerodyiarmc

stable. Adding extra terms to reduced order mo s stability for long integration periods, mostly
due to dissipation, and balancing the dynami d in the coherent POD modes [10].

Unstable reduced order models derived from thesGalerkin-POD method have been combined with correc-
tion factors in order to keep the dynamics Pm?the unds of the original system. Such corrections can be
quite effective at introducing stability, isk giippressing complexity of the system [8]. Stability may also
as pointed out by Noack et al. [14] and Rempfer [2] and is
ications such as acoustic fields and transonic flows [18]. Flows
ave a large effect typically do not gain much from the inclusion

in which the fluctuating pressure d
of pressure in the Galerkin system. An
necessary to compute the innérproducts and spatial gradients of constituent modes to sufficient statistical
re most effectively derived from numerical simulation data or require

may defeat the pur, of se
method was pre ntwet et al. [21] wherein the dynamic mode coefficients, rather than the spatially
{ are used directly in the formation of the dynamical system. In this approach, simultaneous
coeflicients and their respective time derivatives are required to resolve the evolution of
tives of the coefficients are combined through a least-squares polynomial fit including
quadratic, and cubic parameters. Linear and quadratic parameters are analogous to those
1 the Galerkin-POD method accounting for mode interaction in the viscous and convective
f the Navier-Stokes equations. Constant and cubic parameters added to the LODS through the
res II:S\ynomial fit do not issue from projection of the behavior law, but can add stability to the
ical system [7].
'hile ?ta driven (empirical, black-box) dynamical models are not as common for applications in tur-
e ag the Galerkin-POD or other methods built on the Navier-Stokes equations, they offer promising
possibilities for flow control and prediction applications. Even though models like the polynomial fit method
no\exphcltly require knowledge of the underlying physics, they offers several advantages in terms of ease
of 'gefinition of dynamics, speed of calculation, and portability to control methods [22]. Because computa-
tional costs are often low for data-driven models, composition with a larger range of POD modes is feasible,
and account for a broader range of system dynamics [23-25]. Auxiliary turbulence terms and physical mech-
anisms sought in numerous Galerkin-POD studies [10, 16, 17] are taken implicitly from the dynamics of the
input data in this application. Data-driven methods that do not require knowledge of the underlying physics
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Publishimgy also be classified as model-free systems. By definition, data-driven modeling methods seek system dy-
AAAAAA ics from the input or training data and so may be applied to any dynamical system, without regard of
the governing behavior law.

Numerical solution of ordinary differential equations often leads to the propagation of error that can
rapidly accumulate and cause divergence of the system. This is a common issue in POD based dynamical
systems. Often, exclusion of higher order modes that account for dissipation and diffusion mechanisms [26]
changes the energy balance of the system. Other potential pitfalls with POD based systems are incompletely
converged basis modes, and sensitivity to initial conditions [20], which can lead £o skewed descriptions of the
flow field. Error propagation in reduced order models has been reduced throighwa number of recalibration
techniques (e.g. [16, 27-31]). Recalibration has been successfully employ m range of dynamical
systems, including model-free and purely empirical models.

A low-order dynamical system evolving from the proper orthogonal deco
sample of the direct numerical simulation of a fully-developed turbulent
kins University [32]. By reducing the spatial and temporal ran nple, the resulting LODS is
given incomplete information on the dynamics. It is of interest tosdet ine how well a dynamical system
approximates the dynamics of the full system with limited trainping data, The channel flow is a fundamental
turbulence case that has been explored numerically and experimentall a great extent. Because the flow
is well-studied within the range of Reynolds numbers tested, 1 'epresglts an opportunity for development
of reduced order modeling techniques. To date, DNS rengains too énsive for direct control applications,
making reduced order modeling techniques a necessary intermédiary for flow and aerodynamic control. Low-
order models explored below require between 5 and 30%degrees olfégoedom, opening the possibility for future
flow control applications. Error propagation within the mAmical system is tested as a function of the
number of modes used to compose the least-squares‘polynomial fit. The LODS is subjected to iterative re-
calibration by periodically halting the integratio% difiary differential equations (ODEs) and offering
new initial conditions found by minimizing t or between the vector of predicted mode coefficients and

ion fu
ne s

Osition is explored for a small
annelflow hosted at Johns Hop-

their counterparts from the POD. The recalibra r requires that the coefficients be continuous and

differentiable across the recalibration, pre nLS en changes in the predicted velocity fields.
.

THEORY

The method of snapshots{was modified from the original POD as a means of reducing the computational
cost for input data with atial tesolution. The development follows that proposed by Sirovich [4] pro-
viding an ordered set offmodes and aSsociated eigenvalues delineating the energy associated with each mode.
Below, bold math Sg:fb rzpres t vectorial quantities and symbols in plain text are scalar quantities. The

flow field is assumed to be asgto€hastic function of space and time. Velocity snapshots are then denoted as
u(x,t™), where x.and % refer to the spatial coordinate and time at sample n, respectively, over N total
snapshots t0 < g}N )

tofdecompose the fluctuating velocity field into a modal basis of the form,

N
y. u(z,t) = Zai(t)i’(“ (). (1)

(1)37 it is proposed that the velocity can be represented as the superposition of modes <I>(i)(:c)
at communicate spatial organization and time-varying coefficients a;(¢). By convention in the snapshot
, the modes themselves carry no units. It is only in combination with their respective coefficients that
hey esent contributions to the velocity field.

Shf\POD modes are sought through solution of a Fredholm integral equation of the second kind,

/S)R(w,:c')@(:c’)da:’ = \®(x), (2)

where R(x,z’) is the two-point spatial correlation tensor, € is the physical measurement domain, and A
are eigenvalues that delineate the integrated turbulence kinetic energy associated with each POD mode.
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Publlshlﬁ(gj awtion (2) is discretized to be solved numerically and modes are computed by projecting the snapshot
basis into the eigenvector space in product with a vector of coefficients A*(t"). Modes are normalized by
their respective L?-norms forming an orthonormal basis as,

2" (z) = E%Ai,(tn)u(w’tn) : i=1,.., N. (3)
|3 0=y ATt )u(z, t) ||

Coefficients a;(t) in equation (1) are found by back-projecting the set of Stozléstic velocity fields onto the

basis of POD modes and integrating over the domain, \

ai(t) = / (@, ) (z)de. @)
Q

Reconstruction with a limited set of POD modes results in a filteréd desg¢riptiontof the input snapshot basis.
As the POD seeks the energy carrying turbulent structures, accountin or?ﬁegreatest common projection of
the kernel, low-rank modes are taken to be the most energetic find least 18gtropic structures in the flow field.
Intermediate and high-rank POD modes account for turbulence kinetie, energy that is more homogeneously
distributed and more isotropic, as detailed in Hamilton etral. [33}, Theé truncation point of the POD mode
basis is often determined by setting a threshold of the er@ d(;%ri ed by the POD eigenvalues, \.

L
B. Least sqw omial fit

An alternate approach to formulating a dyfiamicalgystem from the POD follows the method of Perret
et al. [21]. There, the dynamical system was pr Mowing a polynomial expansion of permutations of
modes, and the coefficients are combined as,

N,
Qijrajar + Z Cijriajara. (5)

=1 j k= Gok,=1
In equation (5), the parameters aris:)\mﬁst squares fit of monomial terms onto the time derivative of
the POD coefficients directl her than“projecting the governing behavior law onto the POD basis. No
additional regularization wds implémented in calculating the LODS parameters beyond the normalization
of the data and of the POD des as detailed in equation (3). The parameters sought are D;, L;;, Qijk,
and Cjj, relating for nstcznt, ar, quadratic, and cubic mode interaction, respectively. Parameters are
calculated iterativel?(or inyﬂt mode ¢ and involve many terms [21]. Each index 4, j, k,{ spans the POD

dai

basis selected.

A more consolidated ferm of the dynamical system is,
5 dai N
dt = ZxkAk(al,...,aNr), (6)
k=1

£
where g, are t ulénown parameters and Ay are the monomial terms at most cubic. There are a total of
N, pa metersstha couple the mode coefficients, found by minimizing the error function,

— 9

N da: N
3 X2 = l d ZxkAk(al(tp)v"-7aNT(tp)) . (7)

=1 dt k=1

?irﬁation is accomplished numerically by x? = |AX — B|?, where X is the vector of unknown coefficients,
B'the vector containing the N samples of da;/dt and A the matrix of terms a;(¢,), a;(tp)ar(t,), and
a;(tp)ak(tp)ai(ty). In the definition of the coupled set of ordinary differential equations (ODEs) in equation
(5), the POD modes themselves are not employed in the calculating the behavior of the system. One main
advantage is that this approach includes cubic terms which are known to add complexity to the system
without introducing instability [7, 19, 21].
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Publlshlng\ potential detriment to large mode bases is that the system requires that a large number of parameters
be calculated. The total number of parameters calculated is then N, = N, + N2+ N2+ N2, for the constant,
linear, quadratic, and cubic terms coupling each mode to every other mode in the basis. The system requires
that there be records of both a; and da;/dt. This constraint is not insurmountable with direct numerical
and large eddy simulations, but poses a challenge for many experimental approaches.

Numerical solution of the ODEs in equation (5) results in a new time series of coefficients predicting the
relative intensities of each of the modes forming the LODS. Any quantity issuing from the POD dynamical
system will be denoted below with a caret (7). The least-squares fit of thyﬁle derivatives of the POD
coefficients is written da;/dt, the mode coefficients from the LODS are a;, and{are.a function of a new vector
of time values f. The time resolution of @, (#) is related to the error tolera O%leerical ODE solver
and the number of modes in the system [21, 27]. m)

III. TURBULENT CHANNEL FLOW DIRECT N RICAL SIMULATION

An overview of the direct numerical simulation (DNS) of a fully-developed channel flow hosted at Johns
Hopkins University (JHU) is provided here with particular attentiom paid to the sample data extracted
from the simulation and used in the following analysis. For a omp&e description of the procedure and
simulation, the reader is referred to the documentation provided b [32] (see also, [34, 35]). Here, focus
is placed on interpretation the POD and reduced order models:“Accordingly, a relatively small sample of
the full channel flow is selected, limiting both the spa and 3;5 oral ranges of the data.

The channel flow DNS uses periodic boundary canditions,in both the streamwise and spanwise directions
and no-slip boundary conditions at the walls. T%:%\;xzeas kes equations are solved using a wall-normal

|

&

velocity-vorticity formulation [36], according to whichsolusions are provided using a Fourier-Galerkin pseudo-
spectral method for the streamwise and spanwise di:.g%s and seventh-order Basis-splines (B-splines) collo-
cation method in the wall normal direction, Timesntegration is performed using a third-order Runge-Kutta
method. The simulation was performed usi e petascale DNS channel flow code (PoongBack) [37]. The
simulation is performed for approximately a‘singleflow through time of 26 non-dimensional time units, ob-
tained with the streamwise length of thewdomain 87 H and a bulk flow velocity of 0.99994. The Reynolds
number of the flow based on the outer S(glx&qg ey = Up2H /v = 3.9998 x 10*; the complementary friction
velocity Reynolds number is Re, = 1'% 9:9935 x 102.

Data sampled from the full DNS and diseussed below represent a small subset of the total provided in
the database. Data spans theschannel hal-height, —1 < y/H < 0 (normalized by the channel half-height
H). Measurement points wére seléeted in the wall-normal direction by taking every fourth point from the
full resolution of the D solutign of the data in the streamwise direction is set to Axz/H = 0.0123
and in the spanwise di 2/ H = 0.0061. A total of 512 snapshots were sampled from the channel
flow, representing a sm of the full simulation time, ¢ € [0, 3.32]. Parameters of the sampled data
are summarized in Aable isualized in the schematic in Fig. 1(a). Coordinates shown in the table
are normalized by ‘the ehannel*half-height H; velocities are normalized by the bulk fluid velocity Up; time
resolution is no ﬁied by“ /U,. Turbulence seen in the central region of the channel is expected to exhibit

», anisotropic structures, although in an ensemble sense, the turbulence in the outer layers
is more isotropic. e half-channel velocity profile is shown in viscous units in Fig. 1(b).

"

@

. TABLE 1. Details of sampled volume data.
S spacing in z—direction Az = 12.3
-~ spacing in y—direction 0.0016 < Ay <6.2
spacing in z—direction Az =6.1
5 time resolution between snapshots At = 0.0065
measurement points Ng X Ny X Ny =32 X 64 X 32
S number of snapshots ng= 512

T

nsemble-averaged mean velocities are shown in Fig. 2. Full resolution of the channel to this depth is
represented by more than 256 points; significant down-sampling has occurred in the presented snapshots and
is evident in the contours of the volume shown for mean velocities. Downsampling in this way limits the
range of dynamics present in the dataset to a subset of the full DNS. The mean flow field in the channel
shows a streamwise velocity two orders of magnitude larger than the wall-normal and spanwise components.
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channel flow DNS simulation space. Dashed lines corrgépond to t iscous sublayer and the

Sample volume was sized to span from
the wall to the centerline of the channel

Accordingly for wall-bounded flows, the high-shear region to the near-wall region. The magnitude
of U rapidly increases below y/H < —0.8 and changesdlittle foward the center of the channel. Spanwise

variations remain in the ensemble averaged velocity, field, ecting the down-sampling of the dataset. In
the full DNS, the mean wall-normal and spanwise, velogities approach zero. Although the magnitudes of V'
el

and W are very small compared to U, some featur in in Figs. 2(b) and 2(c) that are representative
of the data sample, but differ from the spatia d statistics of the full DNS.
0
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FIG. 2 tre}m wall-normal, and spanwise mean velocities in channel flow scaled by the bulk velocity.
Turbfilence 1 th{sampled data is the field of interest in the development of the following dynamical
systenm, Fig. 3 shows the turbulence kinetic energy (k = w;u;/2) and several turbulent stresses, averaged
on iie. Stress fields in the figure are used as the basis for comparison for the POD representations of

d LODS below. Streaks are evident near the wall, shown in both k and uv, as well as a larger
st cture? the lower-right corner of the sampled volume. Larger structures of lower magnitude are seen
toward the center of the channel. Systems with a large range of structures that are significant to the flow
mics are notoriously difficult to capture with POD based modeling approaches due to the number of
(les that must be retained in the flow description. Wall-normal and spanwise normal stresses are smaller
in‘magnitude than wu but show similar size and distribution of turbulence structures. Streaks near the wall
as seen in k (Fig. 3(a)) arise from contributions of the streamwise and spanwise normal stresses but are
absent in vv.
The streamwise/wall-normal Reynolds shear stress wo (Fig. 3(c)) is the only off-diagonal term from the
turbulence stress tensor expected to have a non-null profile in statistics from the full DNS. The figure
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Publishi:n]gws several regions of large magnitude below y/H < —0.8; away from the wall wv is comparatively small.
According to symmetry in the channel flow, it is expected that ww and vw tend toward zero with complete
statistical convergence; because the sample analyzed here spans a relatively small space and time interval
of the DNS, stresses including fluctuations in the spanwise direction exhibit features on the same order as
wu, demonstrated in Fig. 3(d). Deviation of 7w from the fully converged, null statistical profile reflects
the turbulence in the sampled volume that occurs within the down-sampled temporal and spatial range.
Turbulence statistics from the sampled data shown in Fig. 3 significantly deviate from the fully converged
statistics of the DNS by design. It is of interest in the following analysis to d?{mine whether the proposed

p

dynamical systems can predict turbulence statistics accurately with down-sa W.
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FIG. 3. Turbulence kinetic energy and sele mmlds stresses for sampled channel flow volume.

\
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The POD is applied to the sample data where each snapshot is taken as a 3D field of fluctuating velocity.
The cumulative summation igenvalues in Fig. 4 indicates the number of modes required to reach a desired
threshold of the integrated kinetic emergy. The distribution of eigenvalues normalized by their sum is shown

in Fig. 4 (inset), which By definition demonstrate the distribution of turbulence kinetic energy per mode,
normalized by the tot bit inetic energy. The low-order modes represent the largest portion of the
integrated turbulencg’ kinegic enefgy in the kernel according to the definition of the POD. The relatively
flat portion of the i e inset figure corresponds to a large number of energy-containing modes.
Beyond n ~ 102 rum falls off quickly indicating a rapid decay in the energy carried by high-order
modes.

¢ data, the ability of the POD to quickly account for the full character of the flow is
sulting eigenvalue spectrum is accordingly flattened. The transverse and streamwise
directions a aracterized by periodic boundary conditions, and are considered to be homogeneous in fully
destatisgicsf Homogeneity in the kernel reduces the efficiency of the POD and causes modes to
a Fourier decomposition, retarding the convergence of the basis. Time resolution of the
velocity t sample is equal to the maximum resolution of the DNS data stored from the simulation,
5. At this resolution, velocity snapshots are not statistically independent, and correlation is
tween successive fields. The resulting POD coefficients are not considered uncorrelated in time
as t aré in other applications of the POD, but rather are each a time series.

ccording to the thresholds seen in Fig. 4, five modes are required to account for 50% of the integrated
ulénce kinetic energy, 13 modes are required to reach 75%, and 28 modes are required to account for
90% of the energy in the kernel. The mode basis describes the turbulence; each mode is associated with
spatially coherent turbulence structures in the input flow data. Individual structures illustrated by the
POD modes are not discussed at length in the following development and are shown only to convey the
fact that low-rank modes represent flow features in the center of the channel as well as in the near-wall
region. Of the full basis, the only POD modes and coefficients specifically discussed in the following reduced
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FIG. 4. POD eigenvalues showing the cumulative summation of energy fﬁe normalized energy content by mode
e

(inset). Thresholds accounting for 50%, 75%, and 90% of the turbul nfti\cenergy shown in gray requiring
N, =5, N, =13 and N, = 28 modes, respectively
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FIG. 5t F@of selected POD modes used in reduced order models.
AT

e\y, 4, and 8. The magnitude of each selected mode is shown in Fig. 5. In
om' left are the vectorial magnitudes of modes in increasing order (decreasing energy),

es that the near-wall behavior of the channel flow is present in many POD modes. The POD
rﬂ?ny modes to fully describe this behavior; large structures are seen in all three components of the
10d€s away from the wall in the central region of the channel. The low-rank POD modes accounting for
Wnajority of the integrated turbulence kinetic energy are used to formulate low-order dynamical systems
h&bllowing sections. The coefficients associated with modes including those shown in Fig. 5 are taken
to'express the dynamics of the turbulence and are discussed in greater detail below. An advantage to the
POD is that modes are scaled based on energy content rather than time or length scales. This allows POD
modes, in combination with their respective coefficients, to simultaneously contribute to the dynamics in the
near-wall region and the center of the channel, provided that both regions are present in projections of the
velocity field onto the POD subspace.
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Publishing V. LOW ORDER DYNAMICAL SYSTEM

The dynamical system derived according to the formulation in section IIB is expected to account for
turbulence that includes fluctuations of spanwise velocity in the channel flow. Adding complexity, such as
three-dimensional turbulence, to the reduced order models requires a large range of POD modes to accurately
describe, but makes for a more relevant dynamical system. The capability of LODS to represent the full
channel flow is tested according to the number of modes used to define the system. The modes analyzed
in the following range between three modes (the minimum required to rec%ruct 3D turbulence shown
in Hamilton et al. [33] and 41 POD modes, corresponding to the 95% kinétic energy threshold from the
cumulative summation of POD eigenvalues.

The traditional Galerkin projection is not discussed at length here a Desulting dynamical systems
function best in cases where turbulence is relatively low unless auxiliafy, turbulence mechanisms are added
for stability [10]. Galerkin-POD systems have already been investigated a pipe flow in Aubry et al. [6]
and a channel flow in Ilak and Rowley [38], although the Reynolds number 9§ moderate in each case. In
the current study, the centerline Reynolds number Re. ~ 2.3 x 10%an’ order, of magnitude larger than the
previous documented reduced order modeling techniques. ThefGalerkinsprojection for this flow would be of
benefit for comparison to the current work, and may be a beneficial platiorm for testing current efforts in
model balancing with non-linear eddy viscosity models.

Rather than projecting modes onto the governing eq\ﬁﬁns an eking ODEs for the coefficients, the
low-order system pursued here follows the least-squares eth‘c?’ of the time-varying coefficients directly.
The dynamical system predicting the behavior of the modg coefficiénts is obtained from the derivatives of the
coefficients from the POD. The least-squares type WODS requires simultaneous realizations of both a; and
da;/dt. Data sampled from the channel flow DNS#have'sufficigntly high temporal resolution to yield accurate
estimates of the time derivatives of the POD mode ‘egeflicients. Corresponding with the 90% threshold, 28
POD modes are used to establish the LODS pagateters seen in Fig. 6. The LODS of this rank (28 modes,
90% energy) is used in the recalibration digcusse low. Although the parameters resulting from the least-
squares fit shown in Fig. 6 do not arise fr jection onto the governing equations, they are interpreted
analogously where possible. The constant p eter D; is quite small compared to the others employed
in the current analysis. One interpret he constant parameter from the perspective of dynamical
modeling is as long-term growth g@r inst f each respective POD mode; that these parameters are
small but non-zero implies that the ject to amplification or decay and may ultimately lead to long
term instability if higher-order relationships are not taken into account. Transient or spatially developing
turbulence could be reflecteddyaamnode amplitudes that are not zero-centered, which the constant parameter
would attempt to correct. 4In a traditional Galerkin projection, the linear parameter L;; arises from the
viscous term in the Navief-Stokes equations. The contribution to the viscous dissipation is largely accounted
ce, not accounted for in the truncated mode basis. L;; is the largest in
magnitude of the Zi?dar éters ziadicating a strong linear interaction between modes. The linear parameter

is anti-symmetric t the onal ¢ = j, and is of greatest magnitude in the off diagonals where ¢ = 7+ 1.
This is taken to in iM the linear interaction is strongest in modes of similar rank.

Through analogy te the erkin-POD procedure, the quadratic parameters ;1 are taken to represent the
tibns of convective and pressure terms. Effects of the mean flow field and the fluctuating
1e LODS though the turbulent dynamics, although they do not appear as variables as
ynomial parameters. In the interpretation of the Galerkin projection, fixing j =0 or k =0
iatéd with convection. In the LODS developed here, the mean flow field is omitted and

not include a zeroth index. The mean flow is implicitly included in the model through
éashots although it is not considered as a variable in the dynamical system. Permuting the
in the quadratic term yields identical values; the interactions expressed by Q;; are of mode
ith a cgnbination of j and k.
rameters couple the mode coefficients G; in the system of ODEs to be solved as in equation (5).
degree to which a mode is coupled to any others is shown as the relative magnitudes of each parameter.
rente values imply strong correlation or anti-correlation in the dynamic evolution of the modes. Small
values of the parameters are taken to indicate that a combination of the modes in question is negligible in
the evolution of the system. The least-squares fit from equation (7) matches da;/dt calculated from the
time series of POD mode coefficients to one solved in the ODEs da;/dt, shown in Fig. 7(a). The figure
shows the polynomial fit of the LODS to the time derivatives of the POD coefficients in the sample space
(black lines). Fits shown in the Fig. 7 use N, = 5 (dashed gray lines), N, = 13 (solid gray lines), N, = 28
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FIG. 6. Constant 6(a), linear 6(b), and quadratic 6(c) parameters from Squazes fit of da;/dt using 28 modes.

For the quadratic term shown, the index k = 1 is fixed and other c entSware omitted. Cubic term is not shown
for brevity.

(dotted gray lines), N, = 41 (dash-dot gray) modes accounti 50%, 75%, 90%, and 95% of the energy
of the input data, respectively. Trends of the fit of da;%dt indicate that truncating the modal basis acts as
a low-pass filter on da;/dt. Major features of the e de 5?63' are well-represented with few modes but
higher frequency dynamics of a; are missed in t M w rank.

Solving the ODEs results in predictions of coef;&az wn in Fig. 7(b). As with their time derivatives,
the POD coeflicients are shown in black line resultmg from reduced order model are shown in
gray. Initial conditions are required for solution taken ere as the first value of each coefficient from the
POD, corresponding to t = 0 from the cha oW S. The choice of initial conditions is arbitrary and the
resulting approximations @; evolve distinctlyoraeh choice, although choosing ag = a;(t = 0) is convenient
in that the coefficients take a known ject from this point to which the model may be compared.
Sensitivity of the solution to initi con% exploited below to recalibrate the LODS and extend the
predictions far past the input time:

Deviation from the time derivativemOD coefficients and their respective least squares fits (da;/dt
and da;/dt) propagate through the solut of the ODEs seen clearly in the difference between a; and a;
in Fig. 7(b). The fit betweén the"ROD coefficients and their respective predictions by the LODS are best
for low mode number n high{LODS rank N,. Error propagation through the solution of the ODEs
is most notable in the dés used in the LODS. Deviation from the expected trajectory is seen
clearly for modes n n = 8 for low-ranking LODS, bottom of the figure. When using 13 modes
(accounting for 75%fof the u]energy), the coefficient ag is nearly periodic and does not match the POD
coeflicients accurately. “Error pagation beyond the input time of the sampled DNS grows quickly to the
coeffigients a; eventually diverge and numerical solution is no longer possible. The
ability to pre outside of the input time depends on the number of modes used to formulate the LODS
ce in the numerical solution of equation (5).
thé basiswto include N, = 28 adds a greater number of mode interactions to the LODS and

nt fof a broader range of dynamics. The time derivatives shown in Fig. 7(a) demonstrate
a tigh r fit thanigd the 5-mode LODS, as expected. Error is reduced by allowing a greater range of mode
i the fit parameters. In the 14-mode LODS, significant deviations between da;/dt and da; /dt
il n = 16. Increasing the mode basis used in the LODS and decreasing the error propagated
through tg ordinary differential equations naturally increases the ability of the LODS to predict the mode

shown in Fig. 7(b). As with the 5-mode LODS, error that propagates through the solution
t led ODEs is seen in the predicted coefficients a;. For consistency of comparison, the LODS is
‘eb'mted to making predictions within the timespan of the sampled velocity snapshots.
o quantify the goodness of fit between the POD and LODS coefficients, the normalized RMS error is
calculated as,

(9—29)?

NRMSE(9) = (@) —min(g)’

(8)
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FIG. 7. Time derivatives of POD mode coe (blaek) and their respective LODS approximations in gray with
symbols. Increasing the rank of the LODS leads\to better fit between coefficients 7(b) and derivatives 7(a). For each
subfigure, N,, = 5 dashed gray lines, N, = %ray lines, N, = 28 dotted gray lines, N, = 41 dash-dot gray lines.

where g is a reference quantity (e.g. }ctnts from the POD), § is the quantity derived via LODS, and
the root-mean-square error ismormalized by the span of the reference quantity.

For the LODS, error is
error of the selected modes
the LODS have a resolitionin
to make difference calculations, ?e predicted coefficients &i(f) are interpolated to the original time input ¢.
Interpolation of th{k rivatives s not necessary as they are calculated to fit the input time by definition.
Reflecting the tr steS%Fi ures 7(a) and 7(b), the error associated with the derivative of any particular

ases a function of the number of modes used in the truncated POD basis N,. It

de?e
is not alwaysst age, however, that the normalized RMS difference increases with n for a fixed basis N,;
hich a higher ranking modes exhibit less error than a low rank mode within a given

culated, between the coefficients a; and a;. Fig. 8 shows the normalized RMS
sussed above as a function of the LODS rank. Coefficients evolving from
& that is a function of the numerical tolerance of the solver. In order

h?regu ar increase the performance of the dynamical system, and certain mode interactions may lead to a
rease in LODS accuracy. RMS errors for a; and da;/dt are shown in Figures 8(b) and 8(a) for selected
mogde coeflicients considering LODS up to rank N,. = 41. The normalized RMS error for da;/dt is smoother
overall than that of ;. Interestingly, the error associated with das/dt is less than that of mode 1 for all of
the LODS tested, regardless of rank. Mode 1 characterizes the turbulence structures most important to the
dynamics of the input. Accordingly, it interacts strongly with other modes and its time-evolution converges
toward the expected value slowly.
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FIG. 8. Error associated with selected mode coefficients according to total numbeér of modes composing the LODS.

VI. PERIODIC LODS RECALT RQIQ‘I:I‘

Numerical solutions presented above propagate error through a; that cempiles and causes the system to
grow unstable and diverge at long solution times. The dynamics de&rmined by the parameters D;, L;;,
Qijk, and Cjjp, specify mode interactions; the trajectory 6f the sy also requires initial conditions, above
taken as a;(t = 0). Using different initial conditions produces distinct coefficient evolutions that obey the
dynamics specified by the LODS parameters. The sensitivity of the LODS to supplied initial conditions is
used as a means to periodically recalibrate the solution, resulting“in a more robust system capable of making

predictions at much longer solution times.

Recalibration is undertaken by matching the kﬁ; . LLODS coefficients at the end of the integration
time @;(t = t5) to the known history of the P -qe\e{e‘nts. The time to which the vector of coefficients is
matched is determined by minimizing the RMS differencé*between a; and a;. The time index of the matched
data is denoted with the subscript m andNiswgferredito as the ‘matching time’. New initial conditions are
provided using the POD coefficients at the %mg time,

0 <t < ty. (9)

previous solution. In the e coefficient matching process, the matched coefficients a; are piecewise con-
tinuous across the recalipration*aud femain bounded in the ranges resulting from the POD. To prevent the
LODS from falling i clbsed orbit, the time span of each integration is assigned randomly up to the
length of the origilfzpitnpu

With refreshed initial condj 10@31;% solution to equation (5) is calculated and concatenated with the

igng(s, t = 3.32. Recalibration of the LODS limits the error propagation in the

coefficients at the dos introduicing discontinuities in d;. Sharp discontinuities in the predicted histories of

the mode coeffici are llmited by adding further constraints to the recalibration process. A short region is

:;}ds of recalibration in which the solution which a; are interpolated between t; and ¢,,.

interpolated region, the derivatives da;/dt are matched and the predicted coefficients
are smoothed t?/red potential discontinuities introduced to velocity reconstructions.

ity of the LODS to initial conditions is beneficial in that it implies a ready supply of starting

e within the known trajectories of a;. However, the number of possible initial conditions

is limi number of snapshots in the input data. Stated otherwise, the finite record of snapshots is
reptesented as.a finite number of linear combinations of modes and coefficients, in this case N = 512, and
can thus t a finite number of coefficient trajectories. This constrain is relaxed by guiding the vector of

re
co cien‘% a;(ty) toward their matched values, rather than replacing them directly with a;(¢,,). The effect
vector of coefficients that is intermediate to both the above vectors,

a0.new = (@)ai(tm) + (1 —a)ai(ty). (10)

The weighting coefficient o determines the balance between a known vector of coefficients from the POD
history a;(t,,) and the final predicted value from the LODS a;(ts). The effect of guiding the coefficients from
the LODS to new values makes a more complete range of coefficients available as initial conditions, rather
than restricting them to the 512 known combinations from the POD history. In the following demonstration
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PUbliShi'r)ngODS recalibration, the weighting coefficient is assigned to a = 0.5 making the new initial conditions
exactly half way between the final predicted coefficient vector and its closest match from the POD history.

5

occurences
occurences
~

0 0.5 1 1.5 2 2.5 3 0 0.

5 il
timespan of integration ")
(a) @),

—
FIG. 9. Histograms depicting 9(a) the timespan of the new ODE solution and 9(b) the matching time for new initial
conditions in the periodic recalibration process.

]
-

v en the range 0 < t < 3.32. With sufficient
instances of recalibration, the histogram of timespans ds toward a flat distribution. Fig. 9(a) shows
the integration timespans of a low-order dynamical system,undergoing 50 periods of recalibration. The
associated distribution of matching times ¢,, after thesgsame/50 instances of recalibration is shown in Fig.
9(b). While the distribution of timespans sho d‘%ﬂ{t finition, the distribution of ¢,, is not similarly
constrained. Coefficients from the LODS a; Med to those from the POD record a; in Fig. 10.
The figure indicates that the modeled mode coefficignts a; remain bounded in the neighborhood of a;. The
recalibration process allows the coefficients ﬁe on‘values outside of their known histories from the POD.
The dynamics are limited to making gpredicti s determined by the LODS parameters, but the original
POD coefficients account for only 512 s, cerresponding to the 512 snapshots from the sampled data.
By allowing the vector of coefficie new values, the predicted coefficients fill the vector space
defined by the truncated POD basist

In extending the time series of the m
evident. Each of the selecte
the input. Here the LODS
as the full DNS and near,
frequency features. In
structures. The predictedcoefficient a; has a range that is approximately 50% larger than its equivalent

The length of integration times is assigned rando

led coefficients, additional features of their time evolution become
s in Fig. 10 shows some periodicity that is determined by the dynamics of
h 50 regalibrations spans up to approximately ¢ = 95, more than 3 times as long

imes the sampled data. The modeled coefficient for mode 1 shows large, low-

in the range of th led
a limited range ;&gﬁwas sampled, it is reasonable to expect that the coefficients produced by the
represent full range required to reconstruct every snapshot in the simulation. During
deled coefficients take on combinations of values not explicitly contained in the set of
ing the density of the coefficients within a similar space. The other coefficients shown
:?ke on smaller ranges outside of the input time, and appear more noisy. Despite the
ed at the boundaries of each recalibration, noise is introduced to the system whenever the
initial lconditions are reset.

O§is of interest to compare the performance of the LODS to the POD and the statistics of
ga‘mple a in terms of turbulence. The fluctuating velocity field was reconstructed using the POD
cien‘aaccording to equation 1, and subsequently used to calculate the modeled Reynolds stress tensor

econstructing the turbulence field with a truncated POD basis amounts to applying a non-linear
pass filter to the input data according to energy; any representation of the turbulence field produced by
uncated POD basis must necessarily contain or describe less turbulent kinetic energy than the full field
description in a global sense. However, shear terms may be over represented by a truncated basis. When
this'is the case, higher-order modes leak energy from the shear terms, although they make a positive global
contribution to the TKE. Fig. 11 compares the streamwise normal stress calculated from the input snapshot
basis, the reduced order description from the truncated POD basis, and the periodically recalibrated LODS,
respectively from left. Only the streamwise normal stress is visualized as it is the dominant contributor to
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FIG. 10. POD mode coefficients (black) and their re&itN
ibragion.

approximations (blue) calculated from the time
derivatives shown in Fig. 7(a) after 50 periods of zecal

\

the turbulence kinetic energy. As anticipat W OD estimate of wu, Fig. 11(b), picks out the large scale,
energetic features of the statistically ved Réynolds stress shown in Fig. 11(a). Large structures below
y/H = —0.5 are captured successfully bﬂhﬁi , including features very near the wall. Features captured
by the LODS in Fig. 11(c) are sifnilar to, the,POD estimates. Differences between the POD and LODS
estimates are seen most clearly in t Q%N@ll region. The LODS exaggerates the effects of POD filtering;
regions of low stress appear muted, and*sggions of high stress (near the wall and around y/H = —0.5) are

amplified compared to the P, construction.
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. 11."Comparison of streamwise normal Reynolds stress from sample statistics, POD reconstruction, and LODS
titnate, from left.

omparing the streamwise/wall-normal Reynolds shear stress wo as in Fig. 12, it is evident that the LODS
makes predictions not seen by the POD estimate. Fig. 12(c) predicts a second structure of high magnitude in
the center of the channel. This structure is not present in either the POD or the sampled statistics, showing
that the model is predicting outside of the input dynamics. Both the POD and the LODS exaggerate regions
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Publishi‘ﬂgere wu > 0 for y/H > —0.6; although neither the POD nor the LODS have any difficulty reproducing
thie character of the shear stress. The superposition and interaction of a large basis of modes is necessary to
converge toward null values of the stresses far from the wall.
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FIG. 12. Comparison of streamwise/wall-normal Reynolds shear sttess from sample statistics, POD reconstruction,

and LODS estimate, from left.
L
To benchmark the performance of the LODS, p‘(&ﬁ%:)f spatially averaged quantities are compared in Fig.
no

13. In each subfigure, a single component of the tress tensor is averaged in the streamwise and

spanwise directions, denoted with angle brac s-(-.)ﬁ?bﬂﬁgures compare the spatially averaged turbulence

stresses for the full channel flow DNS as a dashedyblack line, reproduced from Graham et al. [32], with the
he

profiles from the sampled statistics (gray W t uncated POD basis (blue), and the LODS (orange).
From the figure, it is clear that the LODS s estimations of the Reynolds stresses in the channel that

are at least as accurate as those deri romithe truncated POD basis. In certain areas of the flow, the
LODS makes estimations of the tuchulen esses that are quite similar to those of the full DNS. The flow
description of the LODS has a lon ‘Hm%;;:o d due to the periodic recalibration algorithm and is able to
fill out the state space of the coefficie ting the coefficients take on values other than those provided
in the POD history effectively-accounts snapshots that obey the dynamics of the channel flow, but are
not contained in the original sample. The relationships defined by the LODS parameters dictate the limits
of the system dynamics, a ow for more possible states than the training data.

x107
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FIG. 13. Spatially averaged profiles of Reynolds stresses comparing statistics of sampled data (black), POD recon-
structions (blue), and LODS with periodic recalibration (orange) to the spatially averaged profile from the full DNS
(black,dashed).
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Publlshlng’ ofiles of the spatially averaged Reynolds normal stresses are easily compared in Figure 13. The LODS
malkes approximations of the streamwise normal stress that are within 8% of the full DNS statistics except
between —0.65 < y/H < —0.45. In this region, the LODS exaggerates a peak in the Reynolds stress present
in the sampled data and subsequently in the POD. The wall-normal Reynolds stress in Fig. 13(b) is a
close fit in the near wall region and in the center of the channel. Between —0.9 < y/H < —0.1, the LODS
underestimates (o0). The spanwise Reynolds normal stress meanders around the profile for the full DNS
between —0.9 < y/H < —0.25. It is hypothesized that with a longer simulation time or greater flexibility
in the recalibration process, (ww) may converge toward the DNS profile mor;}(osely. Fig. 13 demonstrates
that the LODS is easily distinguished in terms of the turbulence shear stre§ses. For example, the LODS
profile of (uv) makes a better estimate near the wall than the sampled statistics or POD approximation.
Spatially averaged shear stresses (uw) and (vw) tend toward zero with r;é statistical convergence and
are typically excluded in channel flow discussions as spanwise fluctuations ess important than those in
the streamwise and wall-normal directions. The dashed lines in Figures 13(¢) and 13(f) are set to identically
zero, and do not come from the DNS documentation. For these sh I’Sess the profiles of the LODS are

—

much closer to the expected values than the other approximations:

—-—

TABLE II. Normalized RMS error (%) between the DNS turbulenge ﬁeldtnd approximations from the sampled
data, the POD description, and the LODS with periodic recalibration:“kEor the shear stresses uw and vw, errors are
normalized by the span of each respective approximation, as the range for the DNS is identically zero.

)

uu VU U vy ) YW

Sample| 8.03 21.78 16.38_40.98.0.28 0.32

POD | 7.79 23.73,18.65 40.81 0.28 0.32
LODS |13.61 26& 1 36298 0.30 0.28

Normalized RMS errors according to equatio Malculated for the spatially averaged profiles shown
in Fig. 13, detailed in Table II. Quantifying the iation between the spatially averaged profiles of w;u;
and the estimates from the reduced order de %i s Indicates that the LODS error across the channel half-
height is slightly greater that for the %&m Fig. 13 it is clear that errors arise from localized events.

U
P

The greatest increase in rms error is se approximately 5%. Error shown for the shear stresses ww

and vw are very similar to those of t d the sample, although the figure clearly demonstrates that
the LODS makes a better estimate. Ne shear stresses, the DNS profiles are identically zero and the
normalization used in equation (8) is intappropriate; for ww and vw, the RMS error is normalized by the
span of the estimator rathe hﬁ'lb% span of the DNS profile, leading to the similar values in the table.

/ VII. CONCLUSIONS

4

Low order dy mi(%%‘fems are formulated for the fully-developed turbulent channel flow DNS hosted
i iversitys The dynamical system is derived by seeking a set of parameters that quantify
nd result in a system of coupled ODEs through a least-squares polynomial fit. The LODS
study combines the time-dependent POD mode coefficients directly in formulating
syStem,,in contrast with the Galerkin projection, which instead seeks a dynamical system
i r m{)duct of the Navier-Stokes equations with spatially coherent proper orthogonal modes.
Iting from the LODS are analogous to those from the Galerkin projection; in addition to
adratic terms in the Galerkin system, there are constant and cubic terms, which add both
stability to the dynamics.
S composed here for the turbulent channel flow does not arise from a mathematical projection
1e governing behavior law of the flow. While this may appear to limit the physical significance of the
}yzimica system, it also adds generality to the method. In removing the physical meaning associated with
adli sét of parameters, they become more flexible, in that they may take on a range of values that might
appear inconsistent with the behavior laws governing the flow, but are within the limits for dynamics defined
by the input data. At the same time, extending an analogy to the linear and quadratic parameters provides
an estimate of the influence of viscous or convective terms in the LODS. An additional benefit in the current
definition of the reduced order model is that it derives all flow parameters implicitly from the input data,
whereas the Galerkin-POD procedure requires that parameters like eddy viscosities be supplied by the user.
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Publlshlng\ difference between the LODS and DNS statistics is expected; spatially averaged profiles of the Reynolds
strosses demonstrate that the low-order dynamical system can reproduce the turbulence within 5% of the
statistical error of the sampled data. The dynamics included in the system are defined by the parameters that
quantify mode interaction, and ultimately reflect the data included in the sampled basis of velocity snapshots.
The sample used to compose the LODS represents a small slice of the full simulation; the complete set of
dynamics and turbulence was not included in the kernel of the POD and cannot be fully reproduced by the
LODS.

It is of interest in reduced order modeling for any application to deternge to what extent a system
may account for dynamics beyond the training data. The POD algorithméproyides a set of modes that
describe spatially coherent components of the input. By increasing the dy i ;:Nted for in the kernel
of the POD, the reduced order model above will be better equipped t nr;%1 statistics drawn from the
full simulation. A limitation to the LODS developed here is the need for simultaneous realizations of both
the mode coefficients and their respective time derivatives, which are di It towachieve for many practical
applications. High-fidelity numerical simulations or time-resolve and“dual-time PIV measurements
have been used in the past [21, 27] to accurately develop time der f the POD mode coefficients.

The low-dimensional model explored here is capable of predi ity snapshots that are not included
in the input data or the range of the dynamics from the POD mode ceefficients. Using a larger set of
sample data will produce POD modes that are statistically mor conv;ged, and will certainly lead to better
approximation of the full DNS statistics. A thorough @nalysis ofuthe system response to perturbations
and input functions would advance the control capabilities of lew-dimensional models like those composed
here. Correlating an upstream signal with the POD coefficients would provide a more intuitive recalibration
method, leading to accurate reflections of inflow distur \eds Control models of these sorts would be
attractive for a variety of aerodynamics and ﬂow@ ications.
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