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Abstract

A volume conservative numerical approach is suggested for the modelling of propaga-

tion of a hydraulic fracture away from an injection well. A regular finite element grid

is applied at the reservoir scale without any special gridding of the fracture. Models for

critical fluid pressure are used to derive exact solutions for the propagation of hydraulic

fractures in impermeable and homogeneous rocks. The numerical model is verified by

these exact solutions for hydraulic fracturing. Numerical examples of hydraulic frac-

turing of permeable and inhomogeneous rocks are given, where the volume balance is

given as a function of time.

Keywords: Hydraulic fracturing, volume conservation, critical fluid pressure,
benchmarking, intermittent propagation

1. Introduction

Hydraulic fracturing is rupturing of rocks by injection of fluid under high pressure,

and it has become an important process in the production of gas and oil from shale

formations (Turcotte et al., 2014). Hydraulic fracturing is also applied in a number of

other subsurface operations like the stimulation of oil and gas production from tradi-

tional reservoirs (Mack and Warpinski, 2000), in well testing (Zoback, 2010) and in

the development of geothermal sites (Baisch et al., 2010).

One of the first models of hydraulic fracturing was suggested by Khristianovic and

Zheltov (Khristianovic and Zheltov, 1955), who considered the width of a linear verti-

cal fracture, when the width is the same in the vertical direction. The model of Khris-

tianovic and Zheltov (Khristianovic and Zheltov, 1955) was improved by Geertsma
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and de Klerk (Geertsma and de Klerk, 1969) by including fluid loss, and they provided

approximations for the fracture length and width as a function of time. This model is

often referred to as the GDK-model. Perkins and Kern (1961) suggested a different

approach to linear vertical fractures, where the vertical cross section of the fracture is

assumed elliptical. This approach was considerable improved by Nordgren (1972) who

added fluid loss to the Perkins and Kern model, and obtained analytical and numerical

results for the fracture width, length and volume as a function of time. The latter model

is known under the name PKN-model. The PKN-model and related models continue

to be an area of active research (Kovalyshen and Detournay, 2010). Charlez (1997)

presents the mechanical principles of hydraulic fracturing, explains both the PKN- and

GDK-models, and discuss the assumptions they build on.

A number of different approaches have been developed for the modelling of hy-

draulic fracturing, following the first analytical and semi-analytical models. They

differ by the way they treat the porous rock, the conditions for fracturing, boundary

conditions, spatial dimension, numerical methods, size of the computational domain,

how heterogeneities are introduced and assumptions related to fluid flow in the frac-

ture (Charlez, 1997; Mack and Warpinski, 2000; Adachi et al., 2007).

Tzschichholz et al. (1994); Tzschichholz and Herrmann (1995) represented het-

erogeneities in a porous material by a grid of “welded” beams in order to study the

intermittent nature of hydraulic fracturing. Tzschichholz and Wangen (1998) added

fluid flow to the beam approach and simulated fluid flow in the fracture and leak-off

into the porous medium. A solid medium of springs have also been suggested as a

basis for modelling hydraulic fracturing (Flekkøy et al., 2002). The commercial sim-

ulator UDEC has been used in studies of the hydraulic fracturing in discrete fracture

networks (Riahi and Damjanac, 2013). UDEC simulates propagation of a fracture

along predefined planes, where flow occurs inside the fracture (Riahi and Damjanac,

2013). Discrete fracture models (DFM) have been developed into 2D embedded frac-

ture models (EFM), where the fracture system and the surrounding matrix are treated

as two separate, but coupled, computational domains (Norbeck and Horne, 2014; Nor-

beck et al., 2016). The coupling between the fracture- and matrix domains is handled

by source terms in a manner similar to the dual porosity model (Norbeck and Horne,
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2014). Wheeler et al. (2014); Lee et al. (2016) have developed a continuum approach

to fluid driven fracture propagation based on poroelasticity, where the fracture is repre-

sented by a phase-field. The phase-field variable is a measure of the local damage of the

material, and it is continuous from 0 to 1, where 0 is the fracture and 1 is the rock. This

approach uses grid refinement around the fracture and the method is tested in 3D (Lee

et al., 2016). The commercial code PFC3D has been used to simulate hydraulic frac-

turing of an assemblage of grains. The grain contacts have normal and shear forces,

which allows for slip, breaking and studies of acoustic emission (Shimizu et al., 2011).

Common for these numerical approaches is that they account for heterogeneities and

how heterogeneities affect the fracturing process. It should also be mentioned that hy-

draulic fracturing is modelled with invasion percolation models, where the mechanics

of breaking and the fluid flow are represented by simple rules (Norris et al., 2014).

These models are applied to rocks where the fracturing process is dominated by het-

erogeneities. Even though invasion percolation models are based on simple rules they

are able to produce realistic microseismic event distributions (Norris et al., 2014).

The model proposed in this article assumes that the rock follows Biot’s poro-

elasticity. The poro-elastic equations for fluid flow and mechanics can be solved de-

coupled in an unconditionally stable manner, when the mechanics problem is solved

with the finite element method and then the flow problem is solved with a cell centered

finite difference or finite volume method (Kim et al., 2011a,b). It is therefore possible

to couple reservoir simulators with simulators for geomechanics (Settari and Walters,

2001; Rutqvist, 2011; Ganis et al., 2014). The simulators for geomechanics can be

extended with modules for fracturing as demonstrated by Ji and Sullivan (2009). Sim-

ulators with fully coupled reservoir flow, geomechanics and hydraulic fracturing have

also been developed (Dean and Schmidt, 2009).

Wangen (2011, 2013) demonstrated simulation approaches for hydraulic fracturing

in 2D and 3D, respectively, where both the poro-elastic fluid flow and the mechanics

problem were solved with the finite element method. The fracture was represented

with a regular grid at the reservoir scale without any special gridding. The condition

for fracture propagation was given as strength assigned to each element in terms of

stress or strain limits.
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The current work is a continuation of the approach based on a regular finite element

grid (Wangen, 2011, 2013). The fluid flow in the fracture, during intermittent fracture

propagation, is now approximated with scalar time-dependent value. It turns out to be

a reasonable simplification for intermittent fracture growth, where each fracture event

is followed by a pressure drop. A finite volume method is now used for the solving of

fluid flow problem, which assures that the model is volume conservative. The volume

injected through the well is then the same as the volume of the fracture plus the volume

leaked-out through the fracture walls into the rock.

Another difference with the current model is that the condition for tensile fracture

propagation is a critical fluid pressure. The critical fracture pressure is slightly larger

than the least compressive stress (Zoback, 2010). There are different models for the

critical fracture pressure, which are based on the surface energy of rupture. The sur-

face energy is the energy needed to tear a unit area of the rock apart. Two models of

critical fracture pressure are discussed. The use of critical fracture pressure is a sim-

ple and practical condition because the critical pressure can be taken from well tests.

Furthermore, a condition on the fluid pressure does not require the calibration of a crit-

ical stress in the elements. The most stressed elements will fracture when the critical

fluid pressure is exceeded. The numerical model solves for the stress and strain in the

poro-elastic rock using the far-field stress as boundary conditions.

The elements can be assigned an individual random strength that allows for branch-

ing fractures in heterogeneous rocks. The stress enhancement at the fracture tips can

be used for selecting the next element to break. The intermittent nature of fracturing

is demonstrated, where the least increment in fracture length is the size of an element.

Several elements at different places may break at one time step until no more elements

are critically stressed.

The conditions for a critical fluid pressure allows for the derivations of simple ana-

lytical models for hydraulic fracturing of homogeneous low permeable or impermeable

rocks. Conditions for tensile (mode I) fracture propagation are discussed in light of

these models. The analytical models are also useful for validating the numerical code.

The initialization of the fracture process at the well is not a part of the modelling.

Therefore, the model deals with the propagation on an initially small fracture, which in

4



the following examples has the size of three elements. These elements are the injection-

element and its two neighbour elements.

The main features of the proposed numerical model of hydraulic fracturing is that it

is based on a poroelastic rock, and that it has volume conservative intermittent fracture

propagation without any special gridding. Volume conservation implies that the volume

of fluid in the fracture plus the volume of fluid that has leak-off into the rock is equal to

the fluid volume that has been injected. The use of a critical fracture pressure has the

advantage that it can be related to the surface energy of fracturing or it can be taken as

an input parameter from well tests. Non-linear fractures can be modelled using random

rock strength.

The previous models of Wangen (2011, 2013) also compute the fracture volume,

but it is not used directly in a volume balance. The fracture volume enters the pressure

equation indirectly as fracture porosity in the fractured elements. The fracture porosity

in an element is based on the fracture volume in the element, when it is evaluated at the

previous time step. The volume balance for the models of Wangen (2011, 2013) is not

thoroughly tested for a low permeable rock, where most of the injected fluid is in the

fracture. The opposite case, for a permeable rock, has volume conservative properties

as a standard finite element method, because the leaked-out volume is almost the same

as the injected volume.

The advantage with the finite volume method, compared to the finite element method,

with respect to mass and volume conservation is that the finite volume method gives

directly the mass or volume flow across element interfaces. Every element is mass

or volume conservative with respect to flow from the neighbour elements. Therefore,

it is straightforward to compute the leak-off from the fracture using the finite volume

method. A standard finite element method does not provide the flow at the interfaces

of the elements, and it is therefore not suited for applications where mass or volume

flow between elements are of interest.

This paper is organized as follows. The poro-elastic assumptions about the rock are

reviewed. It is shown how the fracture is represented in the numerical model, before

the condition for fracture propagation is explained. Simple exact models for fracture

propagation in impermeable and homogeneous rock are presented, and an exact model
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is used to verify the numerical code. Examples are given of hydraulic fracturing in the

permeable and homogeneous rock, and then in low-permeable and heterogeneous rock.

2. Poro-elastic rock

The numerical model of hydraulic fracturing is based on Biot poro-elasticity for

the rock. The equations for poro-elasticity are two coupled equations - one for the

displacement field and another for the pore fluid pressure (Wang, 2000). The equation

for the displacement field is obtained from mechanical equilibrium

σij,j + g δi3 = 0 (1)

where summation is assumed over every pair of equal indices (Einstein’s summation

convention). The Kronecker delta is δij = 0 for i 6= j and δij = 1 for i = j.

Therefore, gravity drops out because i = 1, 2 for 2D models in the horizontal plane.

In poro-elasticity the normal components of the stress field are modified by the fluid

pressure

σij = 2Gεij + λεkkδij − αpfδij (2)

where we have used the convention that compressive stress is negative. The shear

modulus is G = E/2(1 + ν) and λ = Eν/(1 + ν)(1 − 2ν) is the Lamé-parameter,

where E is Young’s modulus, ν is the Poisson ratio, α is the Biot coefficient and pf is

the fluid pressure. The strain is given by the displacement field ui as

εij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

(3)

The pressure equation for the pore fluid is

1

M

∂p

∂t
−∇ ·

(

k

µ
∇p

)

= −α
∂εv
∂t

(4)

where k is the permeability, µ is the viscosity, εv = ε11 + ε22 is the volume strain and

M is the system compressibility

1

M
= φcf +

α− φ

Ks
(5)

where cf is the fluid compressibility, φ is the porosity and Ks is solid grain modu-

lus (Wang, 2000; Kim et al., 2011a). The pressure equation (4) is expressed in over-

pressure p = pf −ph, which is the fluid pressure pf minus the hydrostatic pressure ph.
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(a) (b)

Figure 1: (a) The displacement equations are solved on the finite element grid (black) and the pressure
equation is solved on the finite volume grid (red), which connects the element centers. (b) The blue nodes
show the displacement of the nodes of an open fracture. The blue colored area in the center shows how the
width of the fracture follows from the displacement field.

The initial fluid pressure is hydrostatic and the hydrostatic pressure remains constant

in space and time. The changing fluid pressure is the cause for the deformations in the

rock, since the boundary conditions are kept constant in time. The rock deformations

have a feedback on the pressure equation though the rate of change of volume strain

∂εv/∂t. These equations are solved numerically with a finite element method for the

displacement equations and the finite volume method for the pressure equation. The

so-called fixed-stress split is applied, which assures that a sequential solution of the

two equations is unconditionally stable (Kim et al., 2011a,b).

A common approach to geo-mechanical modelling is to separate the stress field into

two parts – where the first part is the initial stress field and the second part is the poro-

elastic change to the initial stress field caused by fluid injection (Kim et al., 2011a;

Alpak and Wheeler, 2012; Wangen, 2013). The current approach takes into account

the full stress field. The computational domain is rectangular and the sides are oriented

normal to the principal stresses. The initial stress field is normally anisotropic, and the

principal stresses are therefore not the same.

The poro-elastic model remains linear in stress and fluid pressure as long as ma-

terial properties are unchanged. On the other hand, hydraulic fracturing implies that

the grid elements change properties as they fracture. The model is therefore not linear

after breaking of elements.
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3. Numerical model of the fracture

The fracture is represented on a regular grid as shown in figure 1. The elements in

the grid are of two types – rock or fracture. The elements that constitute the fracture

are different from the rock element by the Young’s modulus, which are set very low in

the fracture. Therefore, there is almost no elastic resistance in the fractured elements

against opening. The fracture width is obtained from the nodes at the boundaries be-

tween the fracture and the rock, see figure 1. Figure 1 shows how the width is given

as the difference between the displacements of the nodes situated across the fracture.

The width obtained from a fractured element gives the fracture volume of the element,

when it is multiplied with the element length and height. The height is taken to be

h = 1 m in 2D. An alternative to the suggested approach, which is also based on a

regular grid, is to represent the fracture by splitted nodes (Ji and Sullivan, 2009; Kim

and Moridis, 2013, 2015). Then, the fracture follows a chain of nodes rather than a

chain of elements. The node-splitting technique is simple to apply when the fracture is

assumed symmetrical and only one side of it is represented by the numerical grid. The

fracture surface can then be represented by free surface nodes of the grid (Ji and Sulli-

van, 2009). Node splitting becomes less straightforward to implement for fractures that

cannot be represented by surface nodes of the grid, for instance a branching fracture

inside the grid.

The finite volume method allows for a volume conservative formulation of the frac-

ture by requiring that the volume increment of fluid (dVin) that is injected during a time

step is equal to the volume increment of fluid in the fracture (dVfr) plus the volume in-

crement of fluid that leaks out through the fracture walls (dVlk)

dVin = dVfr(pfr) + dVlk(pfr) (6)

The fluid pressure is taken to be a scalar value pfr. The fracture volume increment

and leak-off volume increment are then dependent on just one value, the fracture fluid

pressure pfr. This is a simplified description of fluid flow in a fracture with intermittent

propagation, which assumes that the fracture conductivity is sufficiently good for the

pressure gradients within the fracture to be small.
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It was early recognized that most of the pressure drop inside a fracture is towards

the tips, where the width goes to zero (Khristianovic and Zheltov, 1955). Numerical

simulations also demonstrate that the pressure inside the fracture is almost the same as

the injection pressure because of its high permeability (Kim and Moridis, 2013). It is

straightforward to estimate the pressure gradient and the pressure drop along a fracture,

assuming laminar flow and a parallel plate fracture permeability. From Darcy’s law the

pressure gradient becomes

q = wh
w2

12µ

dp

dx
or

dp

dx
=

12µq

hw3
(7)

where q is the injection rate given as volume per time and where wh is the cross section

of the fracture. Using w = 3 mm, h = 1 m, µ = 1 · 10−3 Pa s, q = V/t, where

V = 50 m3and t = 1 day gives a pressure drop dp = (dp/dx) a = 0.03 MPa over a

distance a = 100 m. If there is leak-off in the fracture then the rate q decreases towards

the tips and the estimation for the pressure drop dp becomes even less.

This model has intermittent fracture growth, and the fracture propagates with at

least the length of an element at each discrete event. The instantaneous propagation

of the fracture leads to transients in the fluid pressure. The duration of a transient can

be estimated by the half-life for a transient in a system with constant parallel plate

permeability along the fracture. An estimate for the half-life is

t1/2 =
ln2 cf l

2 µ

π2kf
(8)

where cf is the fluid compressibility, l is the full length of the fracture, µ is the viscosity

and kf = w2/12 is the parallel plate permeability when the fracture width is w (Wan-

gen, 2010). An order of magnitude estimate with cf = 5 · 10−10 Pa, l = 1000 m,

µ = 1 · 10−3 Pa s and w = 1 mm gives that t1/2 = 0.4 s. This estimate can be consid-

ered an upper bound on the time constant since a fracture normally has less length and

larger width.

The volume balance (6) for the fracture pressure pfr is solved by use of a Newton-

Raphson scheme at each time step. The Newton-function is the mismatch in the volume

balance (6), which is the scalar function f(pfr) = dVfr(pfr) + dVlk(pfr) − dVin as a

function of pfr. The function f(pfr) is computed by the following steps.
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1. The fluid pressure is obtained by solving the pressure equation (4) with the fi-

nite volume method, with the fracture pressure pfr used as a Dirichlet boundary

condition in the fractured elements. The external boundaries of the grid has zero

overpressure as a Dirichlet boundary condition.

2. The displacement field, which is generated by the fluid pressure from step 1, is

found by solving the equilibrium equations (1) using the poroelastic stress-strain

relationship (2) and the definition of strain (3). The numerical solution uses a

standard finite element method with bilinear basis functions.

3. The increment dVfr is the difference between the current fracture volume and

the fracture volume at the previous time step. The fracture volume is computed

as the difference in area of the deformed element and the initial undeformed

element. The nodes positions of the deformed element are the displacement of

the nodes added to the initial nodes positions.

4. The volume increment of leaked off fluid dVlk is computed by adding the volume

flux, multiplied with the current time step, in all transmissibilities that connect

the fractured elements with the intact rock elements.

5. The increment in injected volume is dVin = q∆t, where q is the injection rate

and ∆t is the current time step.

6. The mismatch in the volume balance for fracture pressure pfr is then computed

as f = dVfr + dVlk − dVin.

The derivative of the Newton-function f(pfr) is computed numerically. The conver-

gence of the scheme is fast because the increments of fracture volume and the leak-off

volume depend nearly linearly on the fracture pressure pfr. The fracture pressure from

the previous time step is taken as the initial value for the Newton-Raphson scheme.

The mechanics problem is solved with a standard finite element approach using

bilinear basis functions, where the unknowns are obtained at the nodes of the grid. The

fluid flow problem is solved with basis functions that are constant on the elements, and

where the unknowns are found at the center of the elements. This is a mixed finite

element approach with a common choice of basis functions. The weak formulation

of the fluid flow problem gives a finite volume method, where the element centers are
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connected by transmissibilities (Kim et al., 2011a).

4. Fracture propagation

The fracture fluid pressure in an impermeable rock needs to exceed the least com-

pressive stress in order to open (Zoback, 2010). In addition, rock strength gives how far

the fracture can open before it breaks and propagates. Then, in case of a homogeneous

rock the fracturing process creates a planar fracture normal to the least compressive

stress, because of the stress enhancement at the fracture tips. The strength can be con-

verted to a critical fracture pressure in case of a linear fracture in a homogeneous and

impermeable rock. A linear fracture, as a slit in an infinite material, has the critical

pressure

pc(a) = σh ·
(

1 +
2a0
a

)1/2

where a0 =
γE′

πσ2

h

(9)

for surface energy of rupture γ, least compressive stress σh and half-length a, as shown

in Appendix A. The modulus E′ is E′ = E for plain stress conditions and E′ =

E/(1− ν2) for plain strain conditions, where E is the Young’s modulus (Jaeger et al.,

2007). It is practical to express pc with the characteristic length a0, because pc(a)

behaves differently in the two regimes a ≪ a0 and a ≫ a0. It has been common to

express the critical fracture pressure as (Perkins and Kern, 1961; Mack and Warpinski,

2000)

pc(a) = σh +
(2a0

a

)1/2

(10)

which simplifies the derivation of analytical models for the hydraulic fracturing com-

pared with (9). The difference between the critical fluid fractures (9) and (10) is that

the latter do not account for the fact that the fracture is closed for pf < σh (see Ap-

pendix A). The fracture toughness can be obtained from the surface energy of rupture

for tensile fracture as KI = (2γE)1/2, (Jaeger et al., 2007). The surface energy, the

fracture toughness and the Young’s modulus are rock properties.

Well testing shows that fracture propagation takes place for well pressure that is

a flat plateau (Zoback, 2010). The critical pressure (9) starts out as a high pressure

close to the well and then it decreases towards a plateau, which is the least compressive

stress. A problem with the critical fracture pressure (9), is that it becomes almost the
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same as the least compressive stress for a ≫ a0. The regime a ≫ a0 is outside the

near-well area for reasonable values of the least compressive stress and surface energy.

Therefore, the fracture is almost closed outside the near-well region where a ≫ a0. An

almost closed fracture implies that the fracture must propagate very far in a tight rock

in order to have a volume that is large enough to hold the fluid that is being injected.

The critical fracture pressure is approximated by a constant well pressure, which

becomes an input parameter. It is very convenient to have a condition on the fluid

pressure, because it can be compared directly with the fracture propagation pressure

measured by well testing. The hydraulic fracture process is driven by the difference

between the critical pressure and the least compressive stress. This difference is now

given as input, rather than having it estimated from rock strength and permeability.

Even though the fracture condition is in terms of a critical fluid pressure we need a

criterion for selecting elements along the fracture surface to break. The straightforward

approach is to select the most stressed (or strained) elements. These are found at the

two tips of the fracture in a 2D rock with homogeneous properties. In case of symmet-

rical propagation all equally and maximally stressed (or strained) elements will fracture

when the critical fluid pressure is exceeded. The breaking of elements implies that they

have their Young’s modulus changed to a low value, which assures that they give very

little elastic resistance to fracture opening. The full pressure- and stress fields are re-

computed after each breaking event. The numerical algorithm will continue to break

maximally stretched elements until the fluid pressure is brought below the critical fluid

pressure. It is also possible to combine the critical fluid pressure with a random ele-

ment strength. The element to break will then be the most stressed element relative to

a random strength level.

The volume of fluid in the fracture is assumed to be the same right after a fracture

event as it was right before, and less fracture width is needed for a long fracture to give

the same fracture volume as a short one. Therefore, fracture events lead to less fracture

width and a pressure drop in the fracture. For an elliptical fracture in an impermeable

rock the pressure drop becomes

p2 − σh =

(

a1
a2

)2
(

p1 − σh

)

(11)
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σh
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Figure 2: A slit in a 2D rock becomes an elliptical fracture when it is loaded from the inside with a fluid
pressure pf and with a remote stress field σh normal to the fracture.

where p1 and p2 are the pressures at fracture half-lengths a1 and a2, respectively. The

pressure drop (11) follows from the expression for the volume of an elliptical frac-

ture (14). Pressure drop after a fracture event is observed in models with intermittent

fracture propagation (Tzschichholz and Wangen, 1998; Kim and Moridis, 2015).

5. Exact models for hydraulic fracturing of impermeable rock

5.1. Constant critical pressure

Simple and exact models for hydraulic fracturing are reviewed in this section,

which applies for the special case of an impermeable and homogeneous rock. The

model is based on the solution for the displacement field of a slit in an infinite 2D plate

subjected to a constant remote stress field, and where the walls of the slit is loaded with

a constant fluid pressure. The slit becomes an elliptical fracture with the half-width

(see figure 2)

u(a, pf , x) =
2

E′
(pf − σh)

(

a2 − x2
)1/2

(12)

where x is a position along the fracture (Jaeger et al., 2007). The fluid pressure is

constant in the fracture, and the fracture is oriented normal to the minimum principal

stress (Zoback, 2010). The solution shows that the fluid pressure must exceed the

remote stress field, pf > σh, for the fracture to open. The opening is at maximum at

the center of the fracture (the injection point at x = 0) where the half-width is

umax(a, pf ) =
2

E′
(pf − σh)a (13)
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Property pc constant pc(a) for a ≪ a0 pc(a) for a ≫ a0

pc(t) const 2γ2/3
(

E′

πqt

)

σh +
γ2E′

πσ2

hqt

ac(t)

(

E′qt
2π(pc − σh)

)1/2
1

2

(

E′

πγ

)1/3

(qt)
2/3 σhqt

2γ

umax,c(t)

(

2π(pc − σh)qt
πE′

)1/2

2
(

1
π

)2/3 (γqt
E′

)1/3 2γ
πσh

Table 1: The three columns show critical fracture fluid pressure pc(t), critical fracture length ac(t) and
max critical fracture half-width umax,c(t) as a function of time for three analytical models for fracturing of
impermeable and homogeneous rock. The three models are: (1) constant critical fracture fluid pressure, (2)
critical fluid pressure pc(a) given in the regime a ≪ a0, (3) critical fluid pressure pc(a) given in the regime
a ≫ a0.

and the volume of the elliptical shaped fracture becomes

V (a, pf ) = πa · umax(a, pf ) =
2π(pf − σh)a

2 h

E′
(14)

where h is vertical height of the fracture. A unit height h = 1 m is used in the following.

The critical fracture volume Vc is obtained by setting the fluid pressure equal to its

critical value pc = const. The injected volume is V = q t for a constant volume

injection rate q. Solving Vc = qt for a gives the critical fracture half-length as a

function of time

ac(t) =
( E′qt

2π(pc − σh)

)1/2

(15)

The critical pressure and the critical half-length ac can then be inserted into maximum

fracture width (13), which gives the critical fracture width

umax,c(t) =
(2(pc − σh)qt

πE′

)1/2

(16)

The constant critical fracture pressure leads to a critical fracture length and critical

maximum half-opening that both increase as ∼
√
t. One way to check these expres-

sions is to verify that the fracture volume is Vf = πumax,c(t) ac(t) = qt. The critical

half-length (15), the critical half-width (16) and the critical volume Vc = qt are used

to verify the numerical model, when the critical pressure is pc = const.
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5.2. Critical pressure by surface energy

The critical pressure (9), which takes into account the surface energy of rupture, can

be used as a basis for the derivation of alternative expressions for the critical properties:

the half-length ac(t) and the maximum half-width umax,c(t). The critical pressure (9)

is derived in Appendix A. It is not straightforward to derive simple expressions for

ac(t) and umax,c(t) directly from the critical pressure (9). On the other hand, this task

is considerably simplified when it is done separately for the two different regimes of

critical pressure, as defined by the half-lengths a ≪ a0 and a ≫ a0, as shown in

Appendix A.

The regime a ≪ a0, which applies for shallow depths (small values for σh) or short

fractures, has a critical fracture length and a critical half-width that go as ∼ t2/3 and

∼ t1/3, respectively. This is similar to the model of Perkins and Kern in the case of no

leak-off (Mack and Warpinski, 2000), although their expressions do not involve surface

energy of fracturing.

The other regime a ≫ a0, which is the one relevant for layers under compres-

sive stress, have a critical half-length that increases linearly with time. Therefore, the

critical maximum half-width is constant as a function of time. A constant critical max-

imum fracture width as a function of time does probably not give a good description

of a dynamical fracture shape. The critical half-opening is also very small. For ex-

ample, a surface energy γ = 100 J m−2 and a least compressive stress σh = 10 MPa

gives a maximum fracture opening ∼ 10−5 m. Such a small width is also consistent

with the corresponding critical fracture pressure that is just slightly higher than the

least compressive stress. The critical properties of the different models are collected in

table 1.

6. Verification of the model

The exact model, based on constant critical pressure, is well suited for verification

of the numerical model, for the special case of an impermeable and homogeneous rock.

The fracture opens when the fluid pressure exceeds the least horizontal stress σh =

10 MPa and it propagates when it exceeds the constant critical pressure pc = 11 MPa.

The least compressive stress could be typical of a depth range from of 1 km to 2 km,
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depending on the geological setting. The other parameters in the model are a Young’s

modulus E = 10 GPa, a maximum horizontal stress σH = 15 MPa, a Poisson ratio

ν = 0.25, an injection rate q = 50 m3 day−1 and a grid size ∆a = 10.05 m. The full

set of parameters for this model is found in the column “Imperm” in table 2.

Figure 3a shows the numerically computed fluid pressure in the center of the frac-

ture. A fracture event is triggered when the numerical fluid pressure exceeds the criti-

cal pressure, which is shown as the straight line. The fluid pressure exceeds the critical

pressure because the timestepping steps beyond the time of fracturing. The exact time

step of fracturing is not estimated. The instantaneous propagation of the fracture leads

to a pressure drop. The volume of the fluid in the fracture remains the same right af-

ter the event as it was right before the event. But a longer fracture needs less fracture

width, and therefore less fluid pressure in order to have the same volume. The first

pressure drops are largest because the relative elongation of the fracture is largest for

the first events. The fracture is initially 3 elements long, and the first event extends it

from 3 to 5 elements. The initiation of the fracture from the bore hole is not a part of

the modelling. After the instantaneous drop, the fluid pressure continues to increase

because of constant injection. A new fracture event is once more triggered when the

fluid pressure exceeds the critical value. The fracturing process limits the fluid pressure

to the critical pressure as seen from figure 3a.

Fracturing in the numerical code makes the most stressed elements change proper-

ties from rock to fracture, and it continues to fracture elements until the fluid pressure

is below the critical pressure. The most stressed elements are found at the two tips of a

linear fracture that propagates symmetrically away from the injection element.

Figure 3b shows the discrete fracture growth of the numerical model. The fracture

has the same length until an event is triggered, and then the fracture half-length extends

with ∆a = 10.05 m. Therefore, the fracture length produced by the numerical model

appears as a staircase. The smooth critical fracture length of the exact model is also

shown, and the staircase follows the critical fracture length.

The volume of the fracture, computed by the numerical model, is shown in fig-

ure 3c. The volume matches very closely the injected volume. This is as expected,

because the fluid pressure in the fracture is at all times computed in order to match the
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Figure 3: (a) The critical fracture fluid pressure as a function of time. (b) The critical fracture length as a
function of time. (c) The critical fracture volume as a function of time. (d) The critical fracture half-opening
at the well as a function of time.
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Figure 4: The displacement field of nodes surrounding the upper half of the fracture is compared with the
exact displacement of equation (12). See the text for details.

injected volume, as expressed by equation (6). For an impermeable rock this relation

becomes Vfr(pf ) = Vin.

The maximum half-opening umax, which is for the injection element, is plotted in

the figure 3d. The half-width makes an instant drop each time there is a fracture event,

otherwise it increases as a result of pressure build-up from fluid injection at a constant

rate. The match against analytical model for continuous fracture growth is good.

The ability of the numerical model to reproduce the exact results depends on its

ability to produce an elliptical fracture at a constant fluid pressure. Figure 4 shows the

numerically computed fracture shape at the end of the simulation at t = 24 h, and that

it compares well with the exact shape given by equation (12).

7. Hydraulic fracturing of permeable rock

A permeable case is different from the impermeable by the leak-off of fluid through

the fracture walls. The volume balance for the fracture is now given by equation (6). It

says that an injected volume increment is equal to a volume increment of the fracture

plus a volume increment of fluid lost through the fracture walls. The case has a rock
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Parameter Imperm Perm Rand Units
number of nodes x-dir 200 100 300 -
number of nodes y-dir 200 100 300 -
grid length (x- and y-dir) 2000 2000 2000 m
porosity (φ) 0.15 0.15 0.15 -

permeability (k) 0 1e-15 1e-18 m2

Poisson ratio (ν) 0.25 0.25 0.25 -
Biot coefficient (α) 1 1 1 -
Young’s modulus (E) 1e+10 1e+10 1e+10 Pa

fluid compressibility (cf ) 5e-10 5e-10 5e-10 Pa−1

fluid density (̺f ) 1000 1000 1000 kg m−3

fluid viscosity (µ) 0 0.001 0.001 Pa s
fluid fracture pressure (pc) 1.1e+07 1.1e+07 1.1e+07 Pa
min horizontal stress (σh) -1e+07 -1e+07 -1e+07 Pa
max horizontal stress (σH ) -1.5e+7 -1.5e+07 -1.5e+07 Pa

injected volume (Vin) 50 50 50 m3

time span 86400 86400 86400 s

Table 2: The parameters used in the three different cases.

permeability k = 1 · 10−15 m2, a Young’s modulus E = 10 GPa and a Poisson ratio

ν = 0.25. A volume of Vin = 50 m3 is injected during a time span of 24 h. The

parameters in this case study are found in the table 2 in the column named “Perm”.

The pressure at the injection point is shown in figure 5a. It rises until it exceeds

the critical pressure pc = 11 MPa, and a fracture event is triggered. The fracture

event is followed by a pressure drop, because a longer fracture needs less fracture

width, and therefore less pressure, to make volume for the same fracture fluid. The

numerical pressure over-shoots the critical pressure for the first events, because the

numerical model does not try to estimate the exact time of rupture. Initially, there is

a steep pressure increase with time, which becomes less and less steep as the fracture

grows. The time steps are marked with dots on the curve that shows the numerical

fluid pressure. The intermittent fracture growth is shown in figure 5b by the fracture

half-length as a function of time. Each event is the rupture of the two tip elements, and

the half-length grows instantaneously with the length of one element (∆a = 20.2 m).

The fracture has initially the half-length the size of one element (∆a = 20.2 m), since

fracture initiation from the well is not a part of the modelling.

The stress field σyy at t = 24h h is shown in figure 6a, and the stress concentration
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Figure 5: (a) The well pressure during hydraulic fracturing of a permeable rock. (b) The fracture length as a
function of the time corresponding to the well pressure shown in (a).
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Figure 6: (a) The effective stress at time t = 24 h. (b) The overpressure and the Darcy flux at t = 24 h.
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Figure 7: Fluid volumes as a function of time during the hydraulic fracturing process.

around the fracture tips are clearly seen. Therefore, these are the elements that break

during fracture growth, since the rock strength is homogeneous. The stress enhance-

ment is grid size dependent, and it increases with decreasing grid size. The increase in

the tip stress of a linear fracture scales as ∼ r−1/2 for a constant fracture fluid pressure,

where r is the element size (Wangen, 2011, 2013). This is the same behaviour as for

the tips of an ideal linear fracture (Lawn, 1993). The current grid size is not sufficiently

small for the stress state at the center of the elements at the fracture tips to go from a

compressive state to a tensile state. The advantage of using a critical fracture pressure,

on a grid with equally sized elements, is that the grid size is less important. What is

important is that the most stressed element (or elements) is identified and broken when

the critical fracture pressure is exceeded.

The fluid pressure and the Darcy flow field at t = 24 h are shown in figure 6b. The

Darcy flow vectors are longest at the fracture tips, where the pressure gradient in the

rock is largest. The pressure gradients are less outside the center part of the fracture,

where the leak-off has lasted longest.

The fluid volume balance during injection is shown in figure 7. Both fluid leak-

off and accumulation of fluid in the fracture take place from the start. The fracture is
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Figure 8: The numerical fracture has less width than an equally long fracture in an impermeable rock inflated
with the same fluid pressure.

propagating rapidly at the start and the volume accumulation in the fracture is slightly

larger than the leak-off. At the time t = 2 h there is roughly equal amounts of fluid in

the fracture as that has leaked-out, and the volume of leak-off dominates after t = 2.

The fluid volume in the fracture increases smoothly, even though the fracture growth

is intermittent with pressure oscillations. The sum of the fracture volume and leak-

off volume is also shown in figure 7, which is exactly matching the injected volume.

Therefore, the volume balance (6) is very good at all times.

The shape of the fracture after 24 h of injection is shown in figure 8. It is compared

with an equally long fracture in an impermeable rock with the same fluid pressure. The

width is less in the case of leak-off, because leak-off makes the fluid pressure dissipate

into the host rock around the fracture.

8. Hydraulic fracturing of heterogeneous rock

The fracturing procedure looks for an element to break when the fluid pressure

exceeds the critical pressure. Instead of looking for the least compressed (most tensile)

element, the procedure could look for the least compressed element relative to a random
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Figure 9: The stress around the fracture at time 24 h. (a) The stress σxx and (b) the stress σyy .

strength level. Each element can be assigned an individual random strength, which

makes some elements weak and other strong. The element with the largest difference

between the computed stress and its random stress level is selected as the element

to break, when the fracture fluid pressure exceeds the critical pressure. The random

strength level allows for a simple way of selecting an element to break, where the

section is controlled by both the computed stress and a random element strength. Any

element along the fracture surface is then possible candidates for breaking, not just

the two stressed tip elements, where the tensile stress enhancement is strongest. This

allows for a non-linear fracture growth and a branching fracture.

Figure 9 shows an example of fracture growth with random element strength. The

strength is obtained by multiplying the average strength σm = −2.5 · 107 Pa with

a random number r. (Negative stress is compression.) The random numbers r are

produced with the normalized distribution r(ρ) = (n+1) ρn with n = 1/2, and where

ρ is uniformly distributed.

The maximum compressive stress is σH = −15 MPa in the x-direction and least

compressive stress is σh = −10 MPa in the y-direction. The compressive stress along

the fracture becomes reduced, but the tips of the side branches become compressed

23



time [hours]
0 4 8 12 16 20 24

w
el

l p
re

ss
ur

e 
[M

Pa
]

10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

11.6

11.8

12.0

numerical solution
fracture fluid pressure

(a)

time [h]
0 4 8 12 16 20 24

fr
ac

tu
re

 le
ng

th
 [m

]

0

50

100

150

200

250

300

(b)

Figure 10: (a) The well pressure during hydraulic fracturing of a low permeable and heterogeneous rock. (b)
The fracture length as a function of the time corresponding to the well pressure shown in (a).

in the x-direction. The stress field in the y-direction (σyy) shows the strongest tensile

stress enhancement at the most distant fracture tips, and much less stress concentration

at the tip of the branches along the fracture. The σyy-stress also shows that the sides of

the fractures become compressed due to the fracture opening.

An analysis of the element breakage during the injection process showed that ex-

tending the fracture laterally by breaking a distant element reduced the fluid pressure

more than breaking an element on a side branch close to the center. The fluctuations

in the fluid pressure during the injection operation is shown in figure 10a. The fluid

pressure is close to the fracture pressure after the first phase of fracture growth. The

fracture is mainly growing in the x-direction, even though the elements have random

strength. Stronger randomness can be assigned to the elements, and increasing the

randomness makes the stress computation less important for fracture propagation.

The volume balance in figure 11 shows that there is very little fluid leak-off com-

pared to what is stored in the fracture. The reason is the low permeability k =

10−18 m2.
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Figure 11: Nearly all the injected fluid fills the fracture, and almost nothing leaks out during time span of
24 h.

9. Conclusion

A volume conservative numerical framework is suggested for modelling of hy-

draulic fracturing in 2D – the injected volume is at all times equal to the volume that

has leaked out and the volume of fluid that has accumulated in the fracture. The model

is based on Biot’s poro-elasticity for the rock. The numerical model makes use of a reg-

ular finite element grid on a reservoir scale, without any special gridding of the fracture.

Boundary conditions are the far-field maximum and minimum principal stresses for the

x- and y-directions, respectively. The mechanics problem is solved with the finite ele-

ment method, and the fluid flow problem is solved with a finite volume method, which

provides volume conservation for the fracture. The fluid flow in the fracture is approx-

imated by a time-dependent scalar fluid pressure. The fracture propagates by discrete

events followed by a pressure drop. The duration of a pressure transient following a

fracture event is estimated, and it is found to be less than a second for a mm-wide frac-

ture. Intermittent fracture propagation is modelled with a critical fluid pressure alone

or in combination with elements that are assigned strength in terms of stress (or strain)

limits. The numerical implementation is validated against an analytical model for an
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impermeable and homogeneous rock, where the critical fluid pressure is constant. A

non-constant critical fluid pressure is also derived on the basis of fracture surface en-

ergy. But this critical pressure is found less useful than a constant critical pressure,

which can be taken directly from well tests. The numerical framework for hydraulic

fracturing is applied on a permeable rock, which demonstrates volume conservation.

The model is easily adapted to heterogeneous rocks by assigning random strength to

the elements, and an example is given that shows the development of a branching frac-

ture. The fracturing of low permeable rocks shows that most of the injected fluid re-

mains in the fracture when the operation stops, and that little fluid leaks out into the

host rock.
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11. Appendix: The critical fracture pressure for a linear fracture in a homoge-
neous and impermeable rock

Equation (12) gives the displacement field normal to an impermeable fracture wall.

The incremental work done on the fracture wall by increasing the fluid pressure by dp

is therefore

dW = 2 ·
(

p h dx
)( 2

E′

√

a2 − x2 dp
)

(17)

where the first parenthesis is the force over the wall area h dx and the second paren-

thesis is the distance the wall element is displaced. The factor 2 represents the two

fracture walls of a linear fracture. The work done by inflating the fracture to a pressure

p is obtained by integrating over the fluid pressure from σh to p and over x from −a

to a. The fracture is assumed closed for pressures that are lower than σh. The work

becomes

W (a, p) =
πha2

E′

(

p2 − σ2

h

)

. (18)

The energy function W (a, p) can be used to compute the energy release by creating a

new infinitesimal fracture surface area dA = 2h da. The factor 2 represents the two
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surfaces of the line segment da. The energy needed to create the new fracture surface

area is the surface energy γ given by

dW

dA
= 2γ (19)

which gives that
πa

E′

(

p2 − σ2

h

)

= 2γ (20)

or the critical fluid pressure for a fracture with length a

pc(a) =
(

σh +
2γE′

πa

)1/2

(21)

There are two useful approximations of pc(a), depending on the characteristic length

a0 =
γE′

πσ2

h

(22)

The critical fracture pressure can then be approximated as

pc(a) = σh ·
(

1 +
2a0
a

)1/2

=







σh · (2a0/a)1/2 for a ≪ a0

σh · (1 + a0/a) for a ≫ a0
(23)

in terms of the regimes defined by characteristic length a0.
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