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Abstract

Markovian properties of the turbulent velocity increments in a flat plate boundary layer at Reθ = 19 100
are investigated using hot-wire anemometry measurements of the streamwise velocity component in a wind
tunnel. Increments of the longitudinal velocities at different wall-normal positions show that the flow ex-
hibits Markovian properties when the separation between different scales, or the Markov-Einstein coherence
length, is on the order of the Taylor microscale, λ. The results indicate that Markovian nature of turbulence
evolves across the boundary layer showing certain characteristics pertaining to the distance to the wall. The
connection between the Markovian properties of turbulent boundary layer and existence of the spectral gap
is explored. Markovianity of the process is also discussed in relation to the nonlocal nonlinear versus local
nonlinear transfer of energy, triadic interactions and dissipation.
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1. Introduction

Markovian properties of the velocity increments of turbulent velocity fluctuations have recently been
investigated for different flows, i.e. high Reynolds number axisymmetric turbulent jet [1, 2], high Reynolds
number grid turbulence [3], cylinder wake turbulence[4], fractal-generated grid turbulence [5] and wind
turbine array boundary layer [6, 7]. These studies have concluded that statistics of longitudinal velocity
increments exhibit Markovian properties when scale difference (or size difference between the scales) ap-
proximately equals to the Taylor microscale, λ. This is a common observation even though the flows and
Reynolds numbers of investigated cases are different [8].

One of the most difficult aspects of turbulence is existence of a wide range of scales in the flow. The
large (integral) scales, which are characterized by the boundary conditions of the flow, are the scales where
the turbulence kinetic energy is injected into the flow. The kinetic energy is then transferred from large
scales to smaller scales through the turbulence cascade, which forms a hierarchy of scales at different
sizes. At the other extreme, the smallest scales (characterized by the Kolmogorov microscale) dissipate the
turbulence kinetic energy into internal energy by the action of viscosity. At very high Reynolds numbers,
Kolmogorov’s classical turbulence theory suggests a layer between the large, energy containing, and small,
dissipative scales [9]. This layer is indeed formed by a range of scales which are independent of both
extremes of the spectrum and called inertial sublayer.

All fluid motion, whether turbulent or laminar, are governed by the Navier-Stokes equation. The instan-
taneous, incompressible momentum equations for a Newtonian fluid reads as follows:

∂ũi

∂t
+
∂ũiũ j

∂x j
= −

1
ρ

∂p̃
∂xi

+ ν
∂ũiũ j

∂xi∂x j
(1)
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where ũi and p̃ denote i-th component of the instantaneous velocity and instantaneous pressure respectively.
The kinematic viscosity (ν) is defined as ν = µ/ρ, where µ and ρ represent dynamic viscosity and density
respectively. Instantaneous variables can be decomposed into its mean and fluctuating components using the
Reynolds decomposition technique. For example, ũi = Ui + ui, where Ui denotes the mean velocity based
on ensemble averaging and ui denotes the fluctuating component. Plugging decomposed variables into Eq.
(1) and averaging yield mean momentum equations and Reynolds averaged Navier-Stokes equations.

The nature of turbulence consists of an interaction of all existing scales. This is mathematically de-
scribed by the nonlinear convective term of the Navier-Stokes equation, which is the second term on left-
hand-side of Eq. (1). The so-called triadic interactions of scales caused by this term is best understood
when the Navier-Stokes equation is written in Fourier space. The Fourier transformation of the convective
term leads to convolution and results in interaction of all scales of motion. This interaction necessitates
multipoint statistics in order to obtain a complete description of the cascade. In this framework, existence
of the Markovian behavior in turbulent fluctuations is shown to be useful for gaining new insight into the
structure of turbulence [1, 3, 5] and the cascade of energy from large scales to small scales [10].

Statistics of the longitudinal velocity differences (or velocity increments) measured over certain physical
separations in space are often studied to characterize the cascade of turbulence in physical space:

v(x, r) = u(x + r) − u(x) (2)

where u and v denote velocity fluctuations and difference in u measured over r the physical separation in the
streamwise direction x. Note that the Taylor’s frozen field hypothesis is utilized to convert time-resolved
hot-wire data to spatial data , e.g., converting u(t) to u(x). In a similar fashion, time separation between
successive data points in time is converted to physical separation r. Eq. (2) is fundamentally important
because of the fact that Kolmogorov [9] predicts the nth–order structure function, 〈[v(r)]n〉, to be a function
of r and n only, i.e. 〈[v(r)]n〉 ∼ rn/3. Furthermore, when n = 2, the second order structure function,
〈[v(r)]2〉, quantitatively describes the distribution of turbulence kinetic energy over different scales defined
by the separation r.

One way of studying the moments of velocity differences, hence the structure functions, is to calculate
the probability density function (PDF) of the velocity differences at different scales, p(v, r). Since a com-
plete description of the turbulence cascade is only possible by considering the interaction of all scales of
the motion, construction of the multiscale (or N−scale) joint PDF, p(v1, r1; v2, r2; . . . ; vN , rN), is necessary.
(Note that the notation introduced in Ref. [1] is used here, e.g., the scale ri is nested into the scale ri+1, and
N is the maximum number of different scales within the flow field.) In other words, the probability for a ve-
locity difference occurring at a certain scale can be computed in connection with the other possible velocity
differences occurring at the corresponding scales. This essentially means that any velocity difference at any
scale, i.e. vi at ri, should be conditioned on all other differences and their corresponding scales. In this case,
the conditional PDF can be defined as p(v1, r1|v2, r2; . . . ; vN , rN), where r1 < r2 < . . . < rN . The conditional
PDF is obtained using the joint probability density functions as follows:

p(v1, r1|v2, r2; . . . ; vN , rN) =
p(v1, r1; v2, r2; . . . ; vN , rN)

p(v2, r2; . . . ; vN , rN)
(3)

Even though the N−scale conditional PDF provides a complete description of the relationship between
the velocity difference and scale relation across the cascade, in practice it is very difficult to construct this
quantity because of the tremendous number of scales existing in turbulence. The difficulty of getting the
N−scale statistics intensifies even more as the Reynolds number increases, since the length of the cascade
and number of the scales increase with increasing Reynolds number. Application of the Markov theory,
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on the other hand, can introduce a substantial simplification in the formulation of the N−scale conditional
PDF [1, 2, 4, 3, 5, 8]. This is because a stochastic process, which is the longitudinal velocity difference
herein, is considered Markovian if the process, or probability of the present state, can be fully determined
by the most recent state. Should the process is Markovian, the N−scale conditional PDF of the velocity
differences can be simplified as follows:

p(v1, r1|v2, r2; . . . ; vN , rN) = p(v1, r1|v2, r2) (4)

Consequently, the N−scale joint PDF of the longitudinal velocity differences can be constructed in terms of
multiplication of the conditional probability density functions:

p(v1, r1; . . . ; vN , rN) =

N−1∏
i=1

p(vi, ri|vi+1, ri+1)p(vN , rN) (5)

Since application of the mathematics of Markov processes introduces a considerable simplification in
the analysis of multiscale behavior of turbulence, it is of great interest to test this in wall-bounded turbulent
flows. The presence of the wall in these flows affects the structure of turbulence and increases inherent
complexity due to the boundary conditions imposed at the wall. In addition, viscosity plays an important
role in the inner part of the flow, in particular in the vicinity of the wall. The local Reynolds number in
wall-bounded flows increases with an increasing wall-normal distance and should therefore be taken into
account in the analysis.

As documented in Ref. [11], turbulent boundary layers at high Reynolds numbers (i.e. Reθ ∼ 20 000)
may still show residual viscous outside of the regions where it traditionally is thought be present and im-
portant. At sufficiently high Reynolds numbers a separation of scales occurs. This means that the energetic
scales at the low end of the spectrum and dissipative scales at the high end of the spectrum are separated.
The dissipative scales in this case can be considered as scales independent of the large energetic scales.
The range where the scale separation occurs is called as an equilibrium range. In this region, the flux of
turbulence kinetic energy becomes constant and equals to the dissipation. Since the local Reynolds number
changes across the layers, the viscous effects delay emergence of the scale separation at wall-normal posi-
tions sufficiently away from the wall. This means that appearance of the k−5/3 range in the one dimensional
wavenumber spectrum, or the r−2/3 range in the second–order structure function, is not possible until the
viscous effects become negligible. Therefore, it is important to investigate the Markovian properties of the
turbulent boundary layer in the light of these conditions.

In this paper, we study the Markovian properties of a high Reynolds number turbulent boundary at
different wall-normal positions from the near-wall region to the freestream. The main purpose of this inves-
tigation is to analyze (i) the scale differences at which the theory of Markov process is applicable, and (ii)
the variation of these scales in the wall-normal direction and effect of presence of solid wall. Traditionally
turbulent boundary layers have been investigated by dividing the boundary layer into different sublayers
from wall to the full boundary layer thickness, δ. This division is performed according to the wall-normal
position in wall-units, i.e. y+ = yuτ/ν, where uτ and ν denote friction velocity and viscosity, respectively.
These layers are defined as the linear sublayer (0 < y+ ≤ 3), buffer layer (3 < y+ ≤ 30), mesolayer
(30 < y+ ≤ 300), inertial sublayer (300 < y+ ≤ 0.1δ+) and outer boundary layer (0.1δ+ < y+ ≤ δ+) [12].
The linear sublayer and buffer layer form the so-called viscous sublayer where the viscosity is significant.
Inside the mesolayer, viscous terms can be ignored in the mean momentum equation, but should be retained
in the two-point equations. The inertial sublayer (or the log-layer) is nearly inviscid and the Reynolds shear
stress is approximately constant. Inside the outer boundary layer, the mean convection terms are balanced
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by the gradient of Reynolds shear stress. We therefore study the Markovian nature of the velocity differ-
ences in each of these layers. The paper is organized as follows: introduction to the experimental data used
in this analysis, results, discussions and conclusions.

2. Experimental Setup

The database investigated in this study is a subset of the WALLTURB database of high Reynolds number
turbulent boundary layer measurements performed in the large wind tunnel of Laboratoire de Mécanique de
Lille (LML) in France. The freestream velocity, U∞, in the LML wind tunnel was 10 m s−1, corresponding
to Reynolds number based on momentum thickness (Reθ = U∞θ/ν) of 19 100, which was achievable in this
wind tunnel because of the long test section of the facility. The measurements were taken 18 m downstream
of the beginning of the test section, where the boundary layer thickness (δ) was approximately 0.30 m.

The tunnel is a closed circuit facility whose test section has dimensions of 21.6 m in length, 2 m in
width and 1 m in height. Freestream velocity of the tunnel, as continuously monitored using a Furness
micromanometer, can be regulated within 0.25%. In order to carry out reliable hot-wire measurements,
an air/water heat exchanger is placed in the end of the return duct to keep the tunnel temperature constant
within ±0.3°C. A more thorough description of the LML wind tunnel with detailed flow characterization
can be found in [13, 14].

The measurements analyzed here were performed using a hot-wire rake of 143 single wire probes in
order to obtain both spatial and temporal information about the turbulent boundary layer, see Ref. [15] for
details. Even though the rake was comprised of 143 probes, which were distributed over an array of 13
vertical combs staggered in the spanwise direction and 11 wall-normal positions from the tunnel wall to
the freestream in the wall-normal direction, we only used the measurements from the first vertical comb. A
careful analysis of the blockage introduced by the rake is documented by Coudert et al [16] using a set of PIV
measurements with and without the hot-wire rake in place in the wind tunnel. The measurements revealed
that the blockage was a potential flow disturbance, which was further verified by a complex potential model
developed to simulate the effect. In addition, single- and two-point statistics computed both disturbed and
undisturbed fields supported these findings. Length (l) and diameter (d) of the sensing wire of the probes
were 0.5 mm and 0.25 µm respectively. These corresponded to l+ (= luτ/ν) of 11 and d+ (= duτ/ν) of 0.006.
The flow parameters for the wall-normal positions where the probes were located are summarized in Table
1.

The simultaneously sampled hot-wire data were recorded at 30 kHz during 6 seconds long blocks. Even
though 2000 blocks of data were collected during the experiment, a smaller subset containing approximately
37 500 integral time scale is used in our analysis. (Note that more number of blocks were also tested in
order to verify the statistical accuracy.) The sampling interval (∆t) in wall-units was ∆t+ ≈0.272 in this
experiment. An in-house developed multiple channel constant temperature hot-wire anemometry system
operated all of the probes. The data were sampled using a fast A/D converter with a Microstar Laboratories
DAP 5400 processor on-board and saved on the disk. Calibration of the probes and conversion of the hot-
wire anemometry readings into the velocities were performed using an in situ calibration technique [17].

3. Results

The Markovian properties of the longitudinal velocity differences are studied by testing Eq. (4) at
different wall-normal positions. In order to reduce the complexity of the analysis, we limit the verifica-
tion to N = 3 in Eq. (4). Fig. 1 shows the contour lines of the conditional PDFs p (v1, r1|v2, r2) and
p (v1, r1|v2, r2; v3 = 0, r3) for r1 = λ, r2 = `/2 and r3 = `. In order to plot the PDFs in two dimensions, v3
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y+ U (m s−1) λ (mm) ` (mm) r∆ (mm) σL (m s−1)
10 2.94 0.64 18.7 0.10 1.41
22 4.23 0.85 36.0 0.14 1.38
50 5.02 1.28 64.4 0.17 1.21
105 5.62 1.70 95.6 0.19 1.15
222 6.22 2.21 137.4 0.21 1.13
440 6.84 2.54 173.8 0.23 1.09
890 7.52 2.81 211.1 0.25 0.99
1810 8.23 2.45 201.3 0.27 0.85
3610 9.09 1.83 166.0 0.30 0.66
5430 9.54 1.52 145.3 0.32 0.47
7240 9.91 1.15 113.8 0.33 0.23

Table 1: Flow parameters of the turbulent boundary layer at Reθ = 19 100. Wall-normal positions of the probes are given
in wall-units, y+ = yuτ/ν. Taylor microscale (λ) is computed in connection with the Taylor’s frozen field hypothesis: λ2 =

〈u2(x)〉/〈(∂u/∂x)2
〉. The integral length scale, `, is computed from the auto-correlation function, ` = (1/〈u2〉)

∫ ∞
0
〈u(x)u(x + r)〉dr.

Spatial separation between two successive data points is denoted by r∆. Dimensionless velocity increments are found by computing
σL, which is the square root of the large-scale (r → ∞) limit of the second-order structure function, σL =

√
2〈u2〉.

is conditioned on 0, the most frequent value of v3 (i.e., 0 is the location where the PDF peaks). In order
to verify the agreement, cross-sections from the contour maps of conditional PDFs in Fig. 1 were taken at
v2 = −σL and v2 = 0. Fig. 2 compares the cross-sections and demonstrates how closely the three-scale
conditional PDF can be represented by the two-scale conditional PDF. These figures show a good agreement
between two- and three-scale conditional PDFs and qualitatively satisfy Eq. (4).

The statistics of turbulence in the boundary layer very much depend on the wall-normal location. There-
fore, Markovian properties of the longitudinal velocity differences across the turbulent boundary layer have
been explicitly studied at additional wall-normal locations by testing Eq. (4) in a similar fashion as shown
in Figs. 1 and 2 and are detailed in Table 1. In total, 11 wall-normal positions extending from y+ =10 to
y+ =7240 are studied. Variations of the Markovian nature of the velocity differences across the turbulent
boundary layer and effect of solid boundary, hence viscosity, on the Markovian properties are investigated
as well. Fig. 3 shows the comparisons of the conditional PDFs at six different representative wall-normal
positions. These positions include locations in the buffer layer (y+ =22), mesolayer (y+ = 105), inertial
layer (y+ =440, 1810), outer layer (y+ =5430) and edge of the turbulent boundary layer (y+ = δ+ =7240).
Note that the physical separations in the streamwise direction used in Fig. 3 are the same as those used in
Fig. 1.

Fig 3 shows that the statistics of the longitudinal velocity differences exhibit Markovian nature at all
wall-normal positions, except the last position at approximately y = δ, provided that r1 = λ, r2 = `/2 and
r3 = `. The two-scale conditional PDFs compare well with the three-scale conditional PDFs, even though
the shape of the contour maps evolve with an increasing wall-normal distance. As the probe moves away
from the wall through the layers, the contour maps gradually get longer along the axis representing v1. The
contour lines along the axis representing v2 are similar to each other from wall to the outer layer, where
extension in v1 directions are accompanied by shortening in v2. This essentially means that the velocity
differences occurring at two different scales characterized by r1 and r2 become similar to each other. The
size of the scales where the velocity differences are computed over, therefore, approach each other. This
can be attributed to the nature of wall-bounded flows in which the largest turbulent fluctuations, hence more
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Figure 1: Verification of the Markovian nature of the velocity differences by comparing p(v1, r1|v2, r2), presented by grey contour
lines, and p(v1, r1|v2, r2; v3 = 0, r3), presented by black contour lines. The physical separations in the streamwise direction: r1 = λ,
r2 = `/2 and r3 = `. The contour values: (0.2 (outermost), 0.4, 0.6, 0.8, 1.0 (innermost)).
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Figure 2: Cross-sections of Fig. 1 at v2 = −σL and v2 = σL: ◦, p(v1, r1|v2, r2); �, p(v1, r1|v2, r2; v3 = 0, r3).

variations in velocity differences, occur close to the wall.
The shape of the contour lines of the conditional PDFs at y+ = 5430

(
0.75δ+) changes substantially.

Even though the Markovian property is still present at this wall-normal location, the collapse of the contour
lines seems to be confined toward to center. At 0.75δ+, entrainment, i.e. mixing the non-vortical laminar
flow into the boundary layer, is a dominant flow phenomenon and modifies the structure of turbulence.
This is strongly felt by the stochastic process. Close to edge of the boundary layer, a developed turbulence
cascade is difficult to achieve due to the entrainment. This, therefore, leads to a less Markovian behavior.
At the last measurement location, which is the edge of the boundary layer at y+ = δ+ = 7240, the two-
and three-scale conditional PDFs never collapse regardless of the size of the scales and scale differences
investigated in this paper. Our observation regarding the less Markovian behavior due to the entrainment
was also previously noticed in passive scalar field in a high Reynolds number grid turbulence where the
internal intermittency is strong in the scalar field [3].
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Figure 3: Verification of the Markovian nature of the velocity differences at different wall-normal positions by comparing
p(v1, r1|v2, r2), presented by grey contour lines, and p(v1, r1|v2, r2; v3 = 0, r3), presented by black contour lines. The physical
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(innermost)).
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Figure 4: Disappearing Markovian nature of the velocity differences for smaller separation of the scales by comparing
p(v1, r1|v2, r2), presented by grey contour lines, and p(v1, r1|v2, r2; v3 = 0, r3), presented by black contour lines. The physical
separations in the streamwise direction: r1 = `/2 − λ/4, r2 = `/2 and r3 = `/2 + λ/4. The contour values: (0.2 (outermost), 0.4,
0.6, 0.8, 1.0 (innermost)).
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Figure 5: Cross-sections of Fig. 4 at v2 = −σL and v2 = σL: ◦, p(v1, r1|v2, r2); �, p(v1, r1|v2, r2; v3 = 0, r3).

Since the statistics of the longitudinal velocity differences satisfy the necessary condition for classifi-
cation of the process as Markovian at certain separations, it is of great interest to find the scale differences
where the Markovian property disappears. One suitable way of checking this to compute two-scale and
three-scale conditional PDFs for scale differences smaller than Taylor microscale. When the separation be-
tween the scales (∆r) is small, for example (∆r) = −λ/4 meaning r1 = `/2−λ/4, r2 = `/2 and r3 = `/2+λ/4,
the contour lines of the two-scale and three-scale conditional PDFs deviate from each other as shown in Fig.
4. This is further examined by comparing the cross-sections of the conditional PDFs at different v2 values as
demonstrated in Fig. 5. These two figures clearly indicate the inequality of two- and three-scale conditional
PDFs, and therefore inapplicability of the Markov properties.

Even though comparing the conditional PDFs as in Fig. 4 and showing the non-overlapping contour
lines are an explicit way of identifying the vanishing Markovian nature of the process, it still is very dif-
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ficult to assess the level of inequality in Eq. (4). Therefore, we further investigate the dependence of the
Markovian properties of the velocity differences on different scales and scale differences by studying the
distribution of two sets of conditional velocity differences, denoted by x and y. These increments are created
following Ref. [1]:

x ≡ υ1(r1)|υ2(r2) (6)

y ≡ υ1(r1)|υ2(r2),υ3(r3) (7)

where the physical separation differences, ∆r, between different scales, i.e. r3 − r2 and r2 − r1, are chosen
to be equal to each other in order to reduce the number of parameters. The PDFs of x and y indeed yield
both sides of Eq. (4). Testing the equality p(x) = p(y) is the same as explicit testing of Eq. (4). One way
of verifying this is to generate x and y and compare the probability density functions of x and y directly
by plotting them together. However, a more quantitative measure is needed in order to assess the relation
between the scales, scale differences and the Markovian nature in detail.

A non-parametric statistical test, the Wilcoxon rank-sum test (or the Mann-Whitney U-test), can be used
to identify the scales and scale differences at which these two stochastic variables (x and y) have the same
probability distributions [1, 8, 18]. The analysis starts with computing total number of inversions, denoted
by Q, once samples of x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , ym] are merged and sorted in an ascending
order. For a sufficiently large sample size, i.e. m, n > 25 as in our case here, Q is normally distributed with
a mean value 〈Q〉 = mn/2 and a standard deviation σq = (mn(m + n + 1)/12)1/2, provided that the equality
p(x) = p(y) is satisfied. The absolute value of the standardized variable is defined as ∆Q = |Q − 〈Q〉| /σq.
This is a half-normal distributed random variable with a mean equal to

√
2/π. Dividing the standardized

variable by its mean yields ∆Q∗ = |Q − 〈Q〉| /(σq
√

2/π). The expected value, 〈∆Q∗〉, is equal to 1, if the
probability distribution of stochastic variables x and y become the same, i.e. p(x) = p(y). Likewise, the
level of departure from the expected value of 1 indicates the level of disagreement between the conditional
PDFs.

In this study, 〈Q∗〉 was a function of the physical separations r1, r2 and r3. Therefore, it was possible
to visualize the dependence of the Markovian property on the size of the scales by changing the r values.
Since r3 − r2 = r2 − r1 = ∆r, 〈Q∗〉 is a function of only r1 and ∆r. In order to obtain a complete picture
on the scales at which the longitudinal velocity differences exhibit Markovian properties, r1 and ∆r were
varied within the following ranges: 1.5 ≤ r1/λ ≤ 20 and 0.1 ≤ ∆r/λ ≤ 5. These were repeated for all
y+ locations tabulated in Table 1. Note that, except for the first two probes located at y+ of 10 and 22, the
hot-wire probes properly resolved turbulence scales down to 0.1λ. (The probes began rolling-off at 0.25λ at
y+ =10, and 0.18λ at y+ =22.)

Fig. 6 shows the variation of 〈Q∗〉 as a function of ∆r and r1 across the boundary layer for seven different
wall-normal positions, which were previously examined in Figs. 1 and 3. Even though the differences in
scale separations were changed up to 5λ, the figures here are limited only to ∆r/λ =2. This is because no
noticeable variation in the curves were observed after ∆r/λ = 1. A straight line presenting 〈Q∗〉 = 1 is also
shown in order to highlight the scale differences where the equality p(x) = p(y) is observed.

An immediate observation in Fig. 6 is that 〈Q∗〉 does not depend on the selection of r1, which essentially
defines the smallest eddy size which is being taken into account. Note that r1 should be about Taylor
microscale [1, 8]. There appear some small differences in 〈Q∗〉 for different r1 values at y+ of 10 and 22
when ∆r/λ is smaller than 0.3 and 0.2 respectively. These differences are caused by the probe resolution
issues as mentioned earlier experimental setup section.

Fig. 6 is useful in order to see the general trend of Markovian properties across the layers. In the near
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wall-region, y+ of 10 and 22, values of ∆r where Eq. (4) is satisfied are larger than 0.5λ. A much faster
convergence of the curves onto the 〈Q∗〉 = 1 is observed as the probe moves away from the wall. Finally,
the 〈Q∗〉 values at y+ = 7240 reveal that the statistics of the velocity differences at this wall-normal location
cannot be considered as Markovian at all.

A close-up of 〈Q∗〉 versus ∆r/λ for all y+ locations measured in the experiment is presented in Fig. 7
for a clear identification of the ∆r values at which the process can be considered Markovian. The scale
difference in this case is called Markov-Einstein coherence length [8], `mar, and identified as the first value
of ∆r where 〈Q∗〉 becomes equal to one or is within the confidence interval around one. Fig. 7 shows that
there is no validation of the equality of p(x) and p(y) when ∆r is smaller than 0.4λ. It also verifies the non-
converging behavior of the 〈Q∗〉 for the last y+ location, which has significant portion of its measurement
time in the laminar external flow.

Fig. 8 compiles the scale differences at different y+ locations for which the sufficient condition for
Markov processes, Eq. (4), is satisfied. The last measurement location is not present in Fig. 8, because the
statistics never exhibit Markovian nature. The accurate ∆r/λ values crossing the 〈Q∗〉 = 1 line are identified
by computing 〈Q∗〉 with very small increments in scale differences. However, one should note that these
small increments are bounded by the temporal resolution (or spatial resolution in the streamwise direction
in this case). In general, ∆r = 0.1λ was enough to determine the 〈Q∗〉 = 1 crossing clearly.

The two positions in the near-wall region inside the buffer layer, y+ = 10 and 22, we observe slightly
higher ∆r/λ values compared to the rest of the boundary layer. Outside of the near-wall region, there are
three distinct regions that can be identified in Fig. 8: (i) A logarithmic decay from y+ of 50 to 222, (ii) a
constant layer at ∆r/λ = 0.4 between y+ of 440 and 1810, and (iii) another constant layer at ∆r/λ = 0.5
from y+ = 3610 to 5430. It should be noted that the constant layer in the outer layer is based only on two
measurement points and the uncertainty is considerably large. Therefore, further refinement in measured
points is needed to arrive in a less uncertain conclusion. Even though the statistics of the velocity differences
can be considered Markovian for values ∆r ∼ λ or larger, which are consistent with other free shear or
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Figure 8: The smallest separation (∆r) between different scales at which longitudinal velocity difference begin exhibiting Marko-
vian properties as a function of the wall-normal location (y+) in the turbulent boundary layer. The best curve fit to the data between
y+ of 50 and 222 has a functional form: ∆r/λ = −0.119 ln(y+) + 1.0624.

decaying turbulence flows at different Reynolds numbers [8, 3, 5], ∆r/λ follows different trends across the
boundary layer depending on the wall-normal position.

Fig. 8 can also be studied using the sublayers of the turbulent boundary layer. The ratio of ∆r/λ
is relatively high inside the buffer layer

(
3 < y+ < 30

)
in which viscous stresses together with the Reynolds

stresses act directly on the mean flow. The ratio of ∆r/λ decreases as the y+ increases through the mesolayer(
30 < y+ < 300

)
, in which viscosity affects all scales of motion of turbulence even though the viscous

stresses become negligible [12, 19]. A constant ∆r/λ is observed across the log-layer
(
300 < y+ < 0.25δ+),

where the Reynolds shear stress is approximately constant and the viscous effects are negligible. Inside the
so-called wake region extending from 0.25δ+ to δ+, the mean flow can be treated inviscid and Fig. 8 shows
constant ∆r/λ value of 0.5 (with a large uncertainty).

Effect of solid boundary, hence the viscosity, is substantial in the near-wall region. As the distance
to the wall in the wall-normal direction increases, the viscous effects weakens. The shear is maximum in
this region and creates highly anisotropic turbulent fluctuations, which can further cause longer memory, in
particular in the streamwise direction. Above the buffer layer, however, the mean momentum equation can
be treated inviscid. As pointed out in Ref. [12], the viscosity within the mesolayer continues to affect the
turbulence at all scales ranging from the energy containing large scales to the dissipative ones, in particular
in the absence of true inertial layer. As we move away from the wall, the flow shows a weaker dependence
on viscosity. The decrease of ∆r/λ between y+ of 30 and 300 can be attributed to the role viscosity plays.
The turbulent eddies populating the log-layer have similar characteristics and therefore lead a constant
separation length. In the outer layer, the effect of entrainment becomes important, hence the ∆r/λ values
observed in this region are indeed similar to the ones observed in grid turbulence [3] and cylinder wake
turbulence [8].

4. Premultiplied spectra

In light of above discussions, it is useful to check the turbulence spectra in particular inside the log-
layer. Fig. 9 shows the premultiplied one-dimensional wave number spectra k5/3

1 F1,1(k1) at three different
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Figure 9: Premultiplied spectra, k5/3
1 F1,1(k1)/〈u2〉, at y+ of 105, 440 and 1810. Dashed lines indicate the region enclosed by k1 = 4

and k1 = 400.

wall-normal positions, i.e. y+ =105 (mesolayer), y+ = 440 (beginning of log-layer) and y+ = 1810 (end
of log-layer). The one dimensional spectra are also normalized by the local variance, 〈u2〉. Since the one-
dimensional wave number spectra are premultiplied by k5/3

1 , the true log-layer (or the inertial sublayer)
should be flat and parallel to the abscissa. If existed, the flat region, or the so-called spectral gap, indicates
a separation of energy-containing and dissipative scales of turbulence. However, the flat region in each
of these premultiplied spectra presented in Fig. 9 is extremely small, even though our turbulent boundary
layer is indeed a high Reynolds number flow (Reθ = 19 100 ). The premultiplied spectra, on the other
hand, display a development toward a wide flat region. We observe that slopes of the premultiplied spectra
decrease in a region between k1 of 4 and 400, as the local Reynolds number (or y+) increases. Even the top
of log-layer at (y+) of 1810, on the other hand, do not have scale-separation, or constant flux regions. This
further means that transfer of energy in the absence of scale separation occurs non-locally.

Fig 10 is produced by integrating the one-dimensional wave number spectra presented in Fig. 9 over the
wave number space. The solid and dashed lines show the energy and dissipation spectra at three different
wall-normal positions, respectively. As clearly shown, there exists no spectra gap between the energy and
dissipation spectra. Dissipation already starts at quite low wavenumbers corressponding to scales which
are considered energetic. As we move away from the wall, the overlap between the energy and dissipation
spectra reduces, however, it is always finite even at the top of the log-layer. Similar results were previously
documented by George and Tutkun [20] for a wider range of wall-normal positions.

5. Summary and Conclusion

In this paper, it has been shown that the statistics of the longitudinal velocity differences in a high
Reynolds number (Reθ = 19 100) boundary layer turbulence have Markovian properties similar to those
documented in other flows[1, 2, 3, 4, 5, 8]. Our study differs from the previous studies which were free
shear flows far from solid boundaries, and therefore the Reynolds stress equation was inviscid. Equality of
the three-scale conditional PDFs to the two-scale conditional PDFs is tested across the turbulent boundary
layer and Markovian properties are observed for ∆r & λ at all measurement locations considered here,
except at y ∼ δ.

13



Figure 10: Solid lines represent running integrals of one-dimensional wave number spectra normalized by turbulence kinetic energy,

〈u2〉: E(k1) = 1 −
1
〈u2〉

∫ k1

0
F11(k) dk. Dashed lines represent running integrals of dissipation spectra normalized by dissipation, ε:

D(k1) =
15ν
ε

∫ k1

0
k2F11(k) dk.

As a non-parametric statistical test, the Wilcoxon rank-sum test is used in order to quantify the level of
agreement (or disagreement) between the two- and three-scale conditional PDFs. Experimental utilization
of the Wilcoxon test reveals that the smallest scale difference, expressed in terms of Taylor microscale,
at which the statistics of the velocity differences begin exhibiting the Markovian nature varies across the
boundary layer. In the viscosity dominated buffer layer, the largest ∆r/λ is needed for the emergence of
Markovian behavior as compared to rest of the boundary layer. This is mainly attributed to the boundary
conditions imposed by the solid wall, dominance of the viscosity therein and the local Reynolds number.
As the turbulent eddies are elongated in the streamwise direction due to presence of large shear in this
region, the memory effects are expected to be slightly longer in the streamwise direction. In addition, the
larger eddies of the turbulent boundary layer modulates the smaller eddies near the wall, and this enhances
the memory of the process. Therefore, larger physical separations between the scales are needed in the
near-wall region in order to satisfy the equality of two- and three-scale conditional PDFs.

Across the mesolayer, a logarithmic decay of ∆r/λ is observed with an increasing y+. It appears that as
the influence of viscosity on turbulence quantities gradually becomes negligible [12, 19], the scale difference
needed for Markovian properties shortens through the mesolayer. After the logarithmically decreasing trend,
a constant value of ∆r/λ = 0.4 is present through the inertial sublayer (or the log-layer). This means that
the memory effects between the scales of motion in this region ares approximately the same regardless of
wall-normal position. Entrainment in the outer layer increases the uncertainty level and causes larger ∆r/λ
values than the ones observed in the log-layer. Here ∆r/λ becomes 0.5 with noticeable uncertainty. The
last measurement position on the edge of turbulent boundary layer never shows Markovian behavior which
is attributed to the strongly intermittent flow because of entrainment and absence of a turbulence cascade at
this location.

The convective term in the Navier-Stokes equations is responsible for nonlinear interactions and transfer
of kinetic energy across different eddies of turbulence. Fourier transformation of the Navier-Stokes equation
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leads to convolution of the convective term and further reveals that the nonlinear interactions in spectral
space are third order. This means that the wavenumbers representing different scales of motion in real space
form triads in spectral space. The triad may result in a nonlocal transfer of energy between the eddies
in certain situations. Formation of the triad needs interaction of three wavenumbers, e.g., ~kl + ~kd1 = ~kd2,
representing two very large (corresponding to dissipative scales) wavenumbers ~kd1 and ~kd2 and one very
small (corresponding to energetic large scales) wavenumbers, ~kl. Once the triadic interaction exists, the
large and small wavenumbers interact. The nonlocal transfer of energy through the interaction of large and
small scales relates to the memory in the cascade process. Kolmogorov’s classical theory for turbulence
suggests that the nonlinear transfer of energy at very large Reynolds numbers with a clear separation of
scales occurs only locally inside the inertial subrange [9]. Even though the inertial sublayer can be described
as a complete Markovian process at very high Reynolds numbers, this can never be achieved for dissipative
scales, first due to the dissipation and second due to triadic interactions.

Breakdown of the Markovian property indicates the interaction of well-separated scales, hence existence
of the nonlocal nonlinear interactions. Our investigation on the high Reynolds number turbulent boundary
layer suggests that non-Markovian behavior is possible at scale differences smaller than Taylor microscale.
As studied herein, extent and strength of the process memory can be characterized by the 〈Q∗〉 value. The
greater departures from 〈Q∗〉 = 1 indicate shorter memory, hence more local nonlinear interactions. This
essentially in agreement with the recent findings of Ref. [11], in which it was shown that departures from
the Kolmogorov’s k−5/3 range in the turbulence spectra always existed in turbulent boundary layers even at
high Reynolds numbers. Previously, similar results, i.e. departures from the true k−5/3, were observed in a
high Reynolds number grid turbulence [21].

An investigation by Carlier et al. [22] on the local nonlinear and nonlocal nonlinear transfer of energy
in a turbulent boundary layer at Reθ = 20600 demonstrated the dominance of local nonlinear interactions in
the energy-containing, low wavenumber part of the spectrum. They also showed the dominance of nonlocal
nonlinear interactions in the dissipative, high wavenumber part of the spectrum. Even at Reθ = 20 600,
significant nonlocal nonlinear interactions, in particular in the dissipative range, indicate the absence of
the separation of scales. In a computational study, Laval [23] showed that it was possible to improve the
departure from Kolmogorov’s

(
k−5/3

)
range once the nonlocal nonlinear interactions were suppressed during

the computation.
Existence of the inertial sublayer requires constant flux of turbulence kinetic energy. The flux of tur-

bulence kinetic energy between the scales in the inertial layer should also be equal to the dissipation [9].
Refs. [24, 25, 26] show that most of the flux in the inertial sublayer is indeed due to local nonlinear inter-
actions. However, nonlocal interactions were found to be accounting for ∼ 20% of the total flux of energy
across the inertial sublayer. This causes the slope of premultiplied spectra within the inertial range in Fig.
9 to be finite, never achieving null value. On the other hand, nonlocal nonlinear interactions become domi-
nant in the dissipative range of the turbulence spectrum [24, 25, 26], supporting previous studies of Carlier
et al [22] and Laval [23]. Also noted in Refs. [24, 25, 26] is the scaling of nonlinear energy flux with the
Reynolds number. It seems that as the Reynolds number increases, the nonlinear interactions weaken and
there is a convergence toward the Kolmogorov’s high Reynolds number turbulence description [9].

In summary, the high Reynolds number turbulent boundary layer studied here reveals that ∆r, where
the Markovian nature of the stochastic process emerges, always have finite values throughout the boundary
layer. The local Reynolds number increases with an increasing wall-normal distance, and level of Marko-
vianity is slightly different in different sections of the boundary layer. Should there existed a true inertial
layer in our flow, which would further indicate a negligible nonlocal interactions across the inertial sub-
layer, it would perhaps be possible to see ∆r/λ converging to null, at least in the log-layer. In this case, a
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complete Markovian description of the inertial sublayer could be obtained. This, however, in a real-world
turbulent flow is not possible because of the fact that it would need null dissipation as well. Even though
most dissipation happens at the higher end of the spectrum, it is always finite across the cascade, and will
eventually destroy the complete Markovian description. Kolmogorov [9] predicts that the transfer of turbu-
lence kinetic energy occurs only locally through the local nonlinear interactions when there exist an inertial
subrange, which is a very high Reynolds number property. As long as the energy exchange between the
scales is a nonlinear process, triadic interactions present and prevents ∆r/λ converging to null. According
to George and Castillo [12], the Reynolds number should be about Reθ � 10 000 for turbulent boundary
layers for emergence of a true spectral gap. This means that turbulent boundary layer experiments at much
higher Reynolds numbers than the one tested in this study are needed to further explore the relation between
Markovian nature of the flow and its relation to spectral gap across the energy spectrum.
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