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Neutron and X-ray reflectometry were used to determine the layer structure and hydrogen content

of thin films of amorphous silicon (a-Si:H) deposited onto crystalline silicon (Si) wafers for surface

passivation in solar cells. The combination of these two reflectometry techniques is well suited for

non-destructive probing of the structure of a-Si:H due to being able to probe buried interfaces

and having sub-nanometer resolution. Neutron reflectometry is also unique in its ability to allow

determination of density gradients of light elements such as hydrogen (H). The neutron scattering

contrast between Si and H is strong, making it possible to determine the H concentration in the

deposited a-Si:H. In order to correlate the surface passivation properties supplied by the a-Si:H

thin films, as quantified by obtainable effective minority carrier lifetime, photoconductance

measurements were also performed. It is shown that the minority carrier lifetime falls sharply when

H has been desorbed from a-Si:H by annealing. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4904340]

To reduce the costs of solar electricity, much effort is

devoted to the development of more efficient crystalline sili-

con (Si) solar cells, which is the most important solar cell

technology today. Key components of all high efficiency so-

lar cell architectures based on Si are the surface passivation

layers: dielectric material systems that reduce minority car-

rier recombination at the silicon wafer surfaces. A commonly

used material is amorphous and hydrogenated Si (a-Si:H)

made by plasma-enhanced chemical vapour deposition

(PECVD).1 In this material, hydrogen (H) plays an important

role in defining the surface passivation properties. Although

widely used in the manufacture of heterojunction solar cells,

the use of a-Si:H in other solar cell architectures is limited

by the low thermal stability of the material.2 To allow for the

development of improved deposition processes for a-Si:H

resulting in films with both improved surface passivation

properties and improved thermal stability, we have investi-

gated surface passivated a-Si:H films before and after ther-

mal treatment by photoconductance minority carrier lifetime

measurements, as well as by neutron reflectivity (NR) and

X-ray reflectivity (XRR) measurements.

Passivated a-Si:H films investigated in this study were

deposited onto n-type silicon float-zone wafers with h100i
orientation. Prior to deposition, the wafers were dipped in

hydrogen fluoride (HF) (5%) and rinsed in de-ionized water.

Thereafter, approximately 40 nm of a-Si:H was deposited

onto both sides of the wafer in an Oxford Systems PlasmaLab

133 PECVD reactor at 230 �C using silane (SiH4). A rapid

thermal processing (RTP) system (AccuThermo AW610) was

used to anneal the wafers at specific temperatures for 1 min at

steady state. Minority carrier lifetime was measured using a

WTC-120 Photoconductance Lifetime Tester from Sinton

Instruments. A series of such measurements for a-Si:H sam-

ples annealed at different temperatures in order to desorb

hydrogen is shown in Fig. 1. Two samples of a-Si:H on

2� 2 cm2 Si substrates were selected for XRR and NR meas-

urements. One of the samples was annealed at 500 �C for 1

min the same day as the NR measurement took place. The

other sample was only exposed to room temperature after

deposition and used as a pristine reference sample.

FIG. 1. Minority carrier lifetime measurements on a series of 40 nm a-Si:H/

Si bilayers annealed at different temperatures. The uncertainty is a few

percent.
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The goal of a reflectometry experiment is to determine

the scattering length density (SLD) as a function of depth z
from the surface. For neutrons, the SLD is defined as

SLD ¼ 1

/

X

i

nibi; (1)

where ni is the number of atoms in a molecule and bi is the

coherent scattering length for element i. The quantity / is

the molecular volume. For X-rays, the SLD is simply

the volume average of the elements’ electron density.

Reflectometry suffers from the phase problem that is generic

to all scattering techniques, meaning that different SLD pro-

files may give rise to identical or almost identical reflectivity

profiles.3 Knowledge of the layer ordering and performing

both NR and XRR measurements is one way to exclude

incorrect interpretation of results. XRR is sensitive to the

electron density of the material in question and thus light ele-

ments, especially H, are invisible to this technique. In the

present a-Si:H thin films, XRR has two weaknesses:

First, the insensitivity to the H content; and second, the poor

contrast between Si and SiO2 resulting from surface oxida-

tion. Thus, the combination of NR and XRR is highly benefi-

cial as XRR gives accurate determination of the layer

thicknesses, while the NR provides information about the

thickness and the composition.

A PANalytical X-ray reflectometer operating at the Cu

Ka wavelength k¼ 1.542 Å was used for the XRR measure-

ments. The reflectivity R was measured at the specular con-

dition as a function of 2h in the angular range 2h ¼ 0�–12�

for 1 h. NR was performed at the SuperADAM neutron re-

flectometer situated at Institute Laue-Langevin, Grenoble,

France,4 at a wavelength k¼ 4.4 Å and with wavelength dis-

persion (Dk/k)¼ 0.007. The reflectivity R(h) was measured

for each sample at the specular condition 2h¼ 0�–8� for 8 h.

Reflectivity data together with sample model fits are plotted

as a function of the transferred momentum q¼ 4pk�1sinh in

Figs. 2(a) and 2(b), for the XRR and NR data, respectively.

The data were analyzed using the GenX reflectivity fit-

ting package.5 NR and XRR data were simultaneously

refined using the logarithm of the reflectivity as the figure of

merit. In addition, the square root of the reflectivity and the

chi square of the data were also tried. However, these figures

of merit overemphasize the region near the critical angle

where systematic errors are known to be worst and therefore

gave inferior results. A four layer model for the surface

structure was constructed as it has proven impossible to

simultaneously fit both datasets well with just three layers

due to different q-ranges and element sensitivities of the NR

and XRR measurements. In particular, the low frequency os-

cillation in the XRR data is outside the q-range of the NR

data, while the internal H distribution is invisible to the

XRR. In this four layer model, the contribution to the elec-

tron density caused by H was assumed to be negligible. The

model was constructed for the X-rays so that the bottom two

layers were composed of pure Si and the top two of SiO2.

The density, thickness, and roughness of these layers were

varied during the fitting process. For the NR data, an addi-

tional parameter was the coherent scattering length per for-

mula unit.

As previously mentioned, XRR has very poor contrast

between SiO2 and Si, but NR can distinguish well between

all different materials present in the sample. X-rays are, in

particular, powerful to determine total thickness and surface

roughness, and XRR could resolve a thin layer of around

1 nm at the solid-air interface which appeared to have an

extremely low density for SiO2. The density of this layer can

be explained as being a non-Gaussian roughness at this inter-

face and the value being composed of the SLD for both air

and SiO2. Below this layer, the model includes a slightly

thicker layer of SiO2 with the same density and thus similar

X-ray SLD as the a-Si:H layers.

A broad interface is observed in the pristine and

annealed samples underneath the oxide layers. Ascertaining

the composition of this layer is, however, complicated by the

possible presence of the three elements Si, O, and H. Since

the value of the neutron SLD of this layer lies between that

for pure Si and SiO2, we would hypothesize that this inter-

face does contain some oxygen. X-ray and neutron SLD pro-

files are shown in Fig. 3.

Hydrogen has a negative scattering length b and thermal

processes resulting in desorption of H will therefore cause an

increase of the a-Si:H SLD. When regarding the neutron

SLDs in Fig. 3, it is clearly seen that the neutron SLD of the

innermost a-Si:H layer in the annealed sample is higher than

the innermost layer in the pristine sample. Good fits to the

neutron reflectivity data are obtained with a SLD¼ 1.597

� 10�6 Å�2 of this innermost a-Si:H layer in the pristine

sample and a SLD¼ 1.744� 10�6 Å�2 of the corresponding

a-Si:H layer in the annealed sample. The respective densities

of these layers, as obtained from XRR are q¼ 2.160 g/cm3

and q¼ 2.119 g/cm3, while the crystalline Si substrate has a

density of q¼ 2.330 g/cm3.

The definition of the SLD, Eq. (1), may be rearranged in

order to solve for the number of H atoms per Si atom in the

innermost a-Si:H layer. In order to do this, one uses / ¼

FIG. 2. (a) XRR profiles and model fits for the pristine sample and the sam-

ple annealed at 500 �C. (b) NR profiles and model fits. The graphs are offset

by a factor of 0.1 for clarity. In parts of the figures, the statistical error bars

are smaller than the model fit lines.
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MR=qNA for the molecular volume with Si formula mass

MR¼ 28.09, Si density q, and Avogadro’s number NA. It is

also assumed that H does not contribute to the density q and

formula mass MR. By setting nSi¼ 1, Eq. (1) is then rear-

ranged into

nH ¼
SLD� /� bSi

bH
; (2)

where nH is now the number of H atoms per Si atom. In

addition to the a-Si:H layer SLD, the molecular volume

/ calculated with q obtained from the XRR data and tabu-

lated coherent scattering lengths bSi¼ 4.1491 fm and

bH¼�3.7390 fm are used in Eq. (2) to determine this ratio

for both samples. For the pristine sample, the calculation

yields nH¼ 0.18, while the result for the annealed sample is

nH¼ 0.08. Thus, approximately half of the H content been

desorbed from the a-Si:H thin films as a result of the thermal

processing. It is clearly seen from Fig. 1 that this is strongly

correlated with significant reduction of minority carrier life-

time of the sample depleted of H after annealing at 500 �C.

In this work, a clear connection between long minority

carrier lifetimes and the presence of H in thin films of a-

Si:H/Si deposited on Si has been shown by NR, XRR, and

photoconductance measurements. The results are consistent

with the assumption that H plays a significant role in passiva-

tion. Further work will focus on the intermediate temperature

regime and different a-Si:H layer thicknesses.
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